
Workshop
 HTML & CSS

Topics - HTML

￫ DevTips

￫ History of the Web

￫ HTML Syntax

￫ Basic HTML Structure

￫ Semantics

￫ Document Structure

￫ Text
￫ Anchors
￫ Images
￫ Lists
￫ Forms

Topics

￫ HTML

￫ CSS

DevTips

You don't have to know how it works,

but where to look it up.

devdocs.io

● Help for HTML, CSS and JavaScript

● Based on MDN

● PWA (available offline)

● devdocs.io

http://devdocs.io

devdocs.io

Emmet

● Popular extension for most online and offline editors

● Boosts productivity with shortcuts and abbreviations

● Emmet cheat sheet

https://docs.emmet.io/cheat-sheet/

Online editors

● Make use of online editors as playground for small and isolated

problems

● Share code examples with your colleagues

● I can recommend

○ codepen.io

○ jsbin.com

○ Codesandbox.io

○ stackblitz

https://codepen.io/
https://jsbin.com/
https://codesandbox.io/
https://stackblitz.com/

caniuse

● Sometimes it’s hard to know which HTML or CSS feature is available

in which browser

● Gives you additional hints about known issues or resources

● caniuse

https://caniuse.com/

DevTools in Firefox and Chrome

● DevTools have tons of features, some are obvious, but some are

hidden

● Time used to get familiar with DevTools is well invested

● Chrome DevTools

● Firefox DevTools

https://developer.chrome.com/docs/devtools
https://developer.mozilla.org/en-US/docs/Tools

<code>CSS color names
No demo without fancy color names, see list.

.dont-do-that {
 color: salmon;
 background-color: papayawhip;
 border-color: lemonchiffon;
}

https://htmlcolorcodes.com/color-names/

Code Katas

● Small coding challenges that focus on a specific topic

○ Can be JavaScript, CSS or framework-related

● Can be done within a team or as a learning group

● Coding is timeboxed

● All solutions get reviewed together

○ see how your colleagues think and code

○ learn new stuff

HTML

HTML is the most basic building block of the Web.

- MDN web docs

Why / What you’ll learn

● HTML & CSS are the foundation of the web and every web application

● They can be used to solve a variety of use cases without touching any

JavaScript 🎉

History of the Web
… and of HTML

The web started on the computer of Tim

Berners-Lee and look what only happened in 30

years.

The birth of HTML and the Web

● Tim Berners-Lee worked at CERN

● He developed the initial version of the web

● First proposal of HTML in 1989

● First implementation of HTML, Browser and server software in 1993

● HTML stands for HyperText Markup Language

https://en.wikipedia.org/wiki/Tim_Berners-Lee
https://en.wikipedia.org/wiki/CERN

The idea of HTML in 1990

➔ Share information (not cat gifs, sorry 😿)

➔ Structure information

➔ Link documents

The first website ever

● Browser version of the first website

● Line mode version of the first website

http://info.cern.ch/hypertext/WWW/TheProject.html
http://line-mode.cern.ch/www/hypertext/WWW/TheProject.html

HTML Versions

● July 25, 1993: HTML 1.0

● November 24, 1995: HTML 2.0

● January 14, 1997: HTML 3.2

● December 18, 1997: HTML 4.0

● December 24, 1999: HTML 4.01

● October 28, 2014: HTML5

● Since then “HTML Living Standard”

Cool new things in HTML5

● Audio

● Video

● Canvas (Demo #1 #2)

● (more) Semantic elements

● Form validations (Demo #1 #2)

https://codepen.io/amdsouza92/full/xdooWa
https://codepen.io/nicokoenig/full/QRZMZy
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://codepen.io/VincentGarreau/full/pnlso
https://codepen.io/ge1doot/full/LkdOwj
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation
https://codepen.io/xavieraraque/pen/ojEeMP
https://codepen.io/fionnachan/full/PBJbvj

Pssst...

HTML is backwards compatible by default.

HTML Syntax

● HTML is organized with tags

● Most elements have an opening and closing tag

● Some elements only have an opening tag, i.e. images

HTML syntax

<code>HTML syntax
Most HTML elements have an opening and closing tag.

<h1>Welcome to my website</h1>
Closing Tag

Opening Tag

<code>HTML syntax
Some elements only have an opening tag. They are called “empty
elements”

Only an opening tag

<code>HTML syntax
You can write empty elements with /> at the end (“XHTML-like”)

● Often “HTML tags” and “HTML elements” are used interchangeable

● Each element holds content, i.e. text, images or other elements

● The element name should describe its content (more details later)

HTML elements

<code>HTML elements
Elements can contain text and/or other elements

<h1>Welcome to my website</h1>

<article>
 <h2>Cats</h2>
 <p>I like cats 🐱</p>

</article>

Permitted content

● Some elements only allow specific content

● Usually the browser will render things nonetheless, but from a

technical point of view its invalid markup

● W3C markup validator

https://validator.w3.org/

Permitted content

● For example

○ elements only allow zero or more elements as content

○ <p> elements only allow phrasing content

Example for permitted content on devdocs.io

● HTML Comments are not visible to the user

● Comments can be used to leave messages for other developers

● Can be used to hide HTML from the user

HTML comments

<code>HTML comments

<article>
 <h2>Cats</h2>
 <!-- Go away cats
 <p>I like cats 🐱</p>
 -->
</article>

<!-- Hey there, I'm a comment -->

This element is not visible to the
user

HTML attributes

● HTML elements can have attributes

● Attributes configure or adjust elements to a specific behavior

● Most attributes are optional, some are mandatory

○ E.g. src attribute for img

● Attribute reference on MDN

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

<code>HTML attributes
Syntax for HTML attributes.

<tag attribute="attribute value">

Attribute value

Attribute name

<code>HTML attributes
HTML attributes for the image element.

Alternative text, if the image
can’t be display and for screen
readers

Attribute for the image source

Basic HTML Structure

● HTML documents usually contain four basic parts

○ A doctype → defines the version of HTML used for this document

○ A html element → holds the entire document

○ A head element → holds metadata

○ A body element → hold actual document content

Basic HTML Structure

<code>Basic HTML Structure
A basic HTML skeleton.

<!DOCTYPE html>
<html lang="en">
 <head>
 <title></title>
 </head>
 <body></body>
</html>

HTML version of this document

Metadata for this document

HTML document is enclosed with html tags

Visible content to the user

Title of this document

● The doctype defines how the browser will handle this document

● DOCTYPE is not an HTML element

● Is the only allowed content before the html start tag

DOCTYPE

● The doctype for HTML5 is html

● Other possible document types are

○ XHTML

○ HTML (other versions than HTML5)

○ SVG

DOCTYPE types

<code>DOCTYPE
Examples for different doctypes.

<!DOCTYPE html>

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

HTML5

XHTML 1.0
Transitional

SVG

● The html element is the top-level element of an HTML document

● The html element is also called root element or document element

● Only one html element is allowed within a HTML document

● All other elements must be descendants of the html element

<html> element

<code><html> element
The html element is the root element of all websites.

<!DOCTYPE html>
<html lang="en">
 <head></head>
 <body></body>
</html>

The lang attribute can be used to specify the
language of this document.

● The head element holds general information about the document

○ Document title

○ Related scripts and/or stylesheets

○ Document author

○ Document description

○ Encoding

○ Viewport

<head> element

<code><head> element
Examples for elements within the head element.

<head>
 <title>My cat blog</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta name="author" content="Taylor Swift">
 <meta name="description" content="the best cats on the internet">
 <link rel="stylesheet" href="style.css">
</head>

● The title element holds the documents title

● The title is shown in the browser’s title bar and page’s tab

● The title element can only contain text

○ All other content will be ignored

<title> element

<code><title> element
The title element contains the title of the current document.

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>My cat blog</title>
 </head>
 <body></body>
</html>

● Pre-defined meta elements for

○ Description, keywords, author, viewport, ...

● Own meta information can be added using the name and content

attributes

<meta> element

<code><meta> element
Examples for custom meta elements.

<head>
 <meta name="google-site-verification" content="02jpioandsfvijnase">
 <meta name="foo" content="bar">
</head>

Meta tag used by Google for site verification

Own (pointless) meta tag

● The body element holds the documents visible content

● There can only be one body element in a document

<body> element

<code><body> element
The body element contains the actual content of a website.

<!DOCTYPE html>
<html lang="en">
 <head></head>
 <body>
 <h1></h1>
 <p></p>
 </body>
</html>

Task
Website Police

Semantics
The meaning of HTML elements

“Semantic HTML elements clearly describe it’s meaning in a

human and machine readable way.”

- freecodecamp.org

Why / What you’ll learn

● Accessibility

○ WCAG defines accessibility rules and levels

○ Common technical requirement

○ Screen readers

● SEO

○ search engine optimization

○ Google Ranking = 💰💰💰

● An element should describe its content

● There are around 100 semantic elements

● Generic elements are also available for when no semantic element

matches

○ Before using a semantic element wrong, consider using a generic element instead

Semantic elements

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Document Structure

● Document structure elements organize the main parts of a document

● Commonly used elements for document structure are
○ <header>, <footer>

○ <main>

○ <aside>

○ <nav>

○ <article>

○ <section>

○ <search>

○ <div>

Document structure

<code><header> element
The header element represents the page’s header.

<body>
 <header>

 <h1>...</h1>
 <nav>...</nav>
 </header>
</body>

A header usually contains a logo, title
and navigational links.

<code><main> element
The main element contains the primary content of the document.

<body>
 <header>...</header>
 <main>
 <article>
 <h1>Cats rule the world!</h1>
 <p>Miau</p>
 </article>
 <article>...</article>
 </main>
</body>

The main content of a news page are the news.

<code><aside> element
The aside element represents secondary content (that is not required to
understand the main content).

<body>
 <header>...</header>
 <main>...</main>
 <aside>
 <section>
 <h1>Buy the new vacuum!</h1>

 </section>
 <nav>Content Navigation</nav>
 </aside>
</body>

The aside element can hold ads or a
secondary navigation for the main
content.

<code><footer> element
The footer element represents a footer for the nearest sectional element.

<body>
 <main>
 <article>
 ...
 <footer>Written by Ernest Hemingway</footer>
 </article>
 </main>
 <footer>
 Imprint
 Contact us
 <p>Copyright 2023 - Cat Empire</p>
 </footer>
</body>

When placed inside body, the footer
represents the websites footer area.

When placed inside other elements,
i.e. articles, it represents the footer
of this particular piece of content.

<code><nav> element
The nav element provides navigational content.

<header>
 <nav>
 Famous cats
 </nav>
</header>
<aside>
 <nav>
 Cats in Space
 </nav>
</aside>
<main>
 <article id="spacecats"></article>
</main>

When placed inside aside element, it
can act as a sub navigation for the
current document.

When placed inside the documents
header it represents the websites
navigation.

<code><article> element
The article element represents a piece of content that is independent.

<header>...</header>
<main>
 <article>
 <h1>Cats in Space</h1>
 <section>...</section>
 <section>...</section>
 <footer>....</footer>
 </article>
</main>
</footer>...</footer>

This article can be moved out of this
document and would still make
sense on its own.

Heading elements

● Headings are represented by six hierarchical elements

○ <h1>, <h2>, <h3>, <h4>, <h5>, <h6>

● Do not skip heading levels for accessibility reasons ⚠
● Technically spoken there can be multiple h1 headings

○ From a logical point of view, there should only be one

<code><h*> elements
The heading element represents the page’s header.

<header>
 <h1>The CAT site</h1>
</header>
<article>
 <h2>How to get a fluffy cat?</h2>
 <section>
 <h3>Shampoo</h3>
 </section>
</article>

h1 represents the document title.

An article can contain different lower
heading levels to structure the content.

Task
Get familiar with codesandbox

Task
Basic Structure

Text

● Text elements are used to structure the content of the website

● Commonly used elements are

○ <p>

○ <blockquote>, <q>

○ , , <i>, <small>

○ <abbr>, <address>

○

Text elements

● Text inside these text elements will be rendered differently

● Screen readers will read specific words with different emphasis

Text elements

<code><p> element
The p element represents a paragraph of content, i.e. text and images.

<article>
 <h2>How to get a fluffy cat?</h2>
 <p>This is the ultimate guide...</p>
 <section>
 <h3>Shampoo</h3>
 <p>The used shampoo...</p>
 <p>We recommend the Fluffy Master 3000 Shampoo

 </p>
 </section>
</article>

A paragraph can be used as the sub
heading.

Paragraphs structure the
content of the document
into meaningful pieces.

<code><blockquote> element
The blockquote element represents a extended quotation.

<section>
 <h3>Shampoo</h3>
 <p>The used shampoo is the most important...</p>
 <blockquote>
 <p>Fluffy Master 3000 is the best!</p>
 <footer>- Anonymous cat person</footer>
 </blockquote>
</section>

Can be used to mark the most
important quote in this article /
section.

<code><q> element
The q element represents a short inline quotation.

<section>
 <h3>Shampoo</h3>
 <p>
 When it comes to fluffy cats,
 <q>The used shampoo is the most important thing</q>
 says the famous cat coiffeur Luigi.
 </p>
</section>

The q element is used for
short inline quotations inside a
paragraph of text.

<code> element
The strong element marks content as strong importance (as in warning
or seriousness).

<p>
 The most important rule:
 Don't feed your gremlin after midnight.
</p>

<code> element
The em element marks words with high emphasis.

<p>
 Get your bottle of Fluffy Master 3000 now!
</p>

<code><i> element
The i element marks text as technical terms, foreign languages or
thoughts.

<p>
 <i>The cat has never been fluffier</i> thought the cat person
 while she pets her lovely Siam.
</p>

<code><small> element
The small element will render text one size smaller than the surrounding
text, it represents side-comments.

<p>
 Use Fluffy Master 3000 and get the fluffiest cat on earth.

 <small>The result highly depends on your cat.</small>
</p>

<code><abbr> element
The abbr element represents an abbreviation or acronym.

<p>
 Use <abbr title="Fluffy Master 3000">FM3K</abbr> for a fluffy cat.
</p>

The abbr element can be combined
with the title attribute.

<code><address> element
The address element marks text as contact information, i.e. physical
address, email address, phone or social media.

<p>
 Get your Fluffy Master 3000 here:

 <address>
 Fluffy Master Inc.

 Castrop-Rauxel

 Germany
 </address>
</p>

<code>
 element
The br element creates a line break.

<p>
 Oans,

 zwoa,

 drei,

 g‘suffa!
</p>

Anchors

Anchors

● Anchors are used to link to documents

● The destination is defined with the href attribute

<code><a> element
Anchor tags are primarily used to link to other documents.

Contact Form
Imprint

<!-- external website -->
Workshops.de

<!-- external website in new tab -->
Workshops.de

https://workshops.de/
https://workshops.de/

<code><a> element - rel attributes
Anchor tags are primarily used to link to other documents.

<!-- Search engine should not follow the link -->
Advertisment

<!-- external website with rel for security reasons-->
External Site

noopener: Browser should not grant the new browsing context access to document, that
opened it
noreferrer: Browser should omit the referer-header

https://example.com
https://example.com

<code><a> element
Anchor tags can be used to add links to specific parts of the same
document.

Contact Form

...

<article id="contact">
 <form>...</form>
</article>

<code><a> element
It is also possible to link specific parts of external documents.

Contact Form

<code><a> element
It is also possible to link to different document types or to mails.

pdf document
mail link

mailto:you@example.com

Images

Images

● Images can be embedded in documents using the img element

● By default images will be displayed in its full resolution, i.e. 400px x

400px

<code> element
Images can be embedded with the img element using the src attribute.

 <!-- XHTML Syntax -->

 <!-- HTML Syntax -->

<code> width and height
Width and height should be used to avoid layout shifts.

Demo and explanation: https://web.dev/articles/cls

https://web.dev/articles/cls

<code>max-width of images
A commonly used technique to restrict the width of images is to set the
max-width to 100% of the containing block in CSS.

img {
 max-width: 100%;
}

<code>alt attribute and images
Images can be embedded with the img element using the src attribute.
Screen readers will skip images with empty alt attributes.

<code>loading attribute - good for performace
lmage should only be loaded, when the image is in the viewport -> good
for images below the fold and other embeds

Image with srcset and sizes attributes

● HTML5 introduced the srcset and sizes attributes

● These are used to give the browser a list of images for different

screen sizes

● The browser will only load the required image, i.e. on mobile

Picture element

● HTML5 also introduced the picture element for art direction

● This element allows to show different images (eg. more or less

background or different formats) based on the current situation

● Article about images in HTML5

https://blog.kulturbanause.de/2014/09/responsive-images-srcset-sizes-adaptive/

<code>Picture element

<picture>

<source srcset="katze_auf_treppe.jpg" media="(min-width: 700px)">

</picture>
Working example
can be found here.

https://codepen.io/FlorenceM/pen/zYLJxRe

<code>srcset and sizes attributes
The srcset and sizes attributes allow to show different pictures
depending on the current viewport.

<img srcset="cat-480w.jpg 480w,
 cat-800w.jpg 800w"
 sizes="(max-width: 600px) 480px,
 800px"
 src="cat-800w.jpg"
 alt="A beautiful cat in the garden">

Working example
can be found here

https://codesandbox.io/s/img-srcset-lq6xm?file=/index.html

<code>srcset and sizes attributes
The srcset attribute allows to show different pictures depending on the
resolution.

<img srcset="katze_2x.jpg 2x"
 src="katze.jpg"
 alt="Katze"> Working example

can be found here.

This is used for high resolution screens

https://codepen.io/FlorenceM/pen/xxJaVLV

<code>Figure and figcaption
For images with captions - but you can use it for captions of tables/code
etc. too

<figure>

 <figcaption>A cat in the garden</figcaption>
</figure>

Lists

Lists

● Lists in HTML are represented with ordered and unordered lists

● Lists can contain zero or more list item elements

● Lists are used for navigation bars

List appearance

● Ordered lists usually will have ordering numbers before each item

● Unordered lists usually will have bullet points before each item

<code> element
The ol element represents an ordered list.

<h2>Best bands in the world</h2>

 Queen
 Peter Maffay
 Haftbefehl

<code> element
The ul element represents an unordered list.

<h2>Some cool names</h2>

 Peter
 Paul
 Mary

Forms

Forms

● Forms are the common use case of business applications

● Forms can contain the following form elements

○ Text inputs, radio buttons, checkboxes, dropdowns and submit buttons

Form element

● A form element groups all form controls of a form

● It usually contains a action attribute that points to a API or endpoint

to which the form is sent

● It can also have a method attribute which defines how the information

will be sent

○ Either POST or GET

<code>Form element
The element groups the whole form and has information about the
endpoint to which the form is sent.

<form action="/api" method="post">
 ...
</form>

Label element

● label elements are used to label form elements

● Labels should use the for attribute, because it defines which form

control is using the label

● The form controls can also be wrapped inside a label

<code>for and id attributes
The for attribute of the label points to the id attribute of the form input.

<label for="name">Name</label>
<input type="text" id="name" name="name">

<label for="email">Email
 <input type="email" id="email" name="email">
</label>

<code>for and id attributes
Clicking labels with a valid for attribute will focus the input or change the
value.

<!-- Clicking the name label will focus the input -->
<label for="name">Name</label>
<input type="text" id="name" name="name">

<!-- Clicking the terms label will toggle the checkbox -->
<input type="checkbox" id="terms">
<label for="terms">I agree to the terms</label>

<code>Radio buttons
Only one radio button in a given group can be selected at the same time

<!-- A group of radio buttons must have the same value for name -->

<input type="radio" id="red" name="color" value="red" >
<label for="red">red</label>

<input type="radio" id="blue" name="color" value="blue" >
<label for="blue">blue</label>

Input element

● The input element can represent different input types

● Input types enable browser validation and restrict the input itself

● Depending on the input type mobile users will see different keyboards

Input types

● Commonly used input types are

○ text

○ email

○ password

○ number

○ tel

○ date

○ color

○ range

<code>Input types
Browsers will allow only specific values for different input types.

<input type="text" />
<input type="email" />
<input type="number" />
<input type="checkbox" />

Textarea element

● Textarea elements are used for multiline input

● The textarea can be resized by default

● The initial size can be set with the cols and rows attributes

<code>Textarea element
Textarea elements are used for multiline input.

<textarea name="message" id="message" cols="30" rows="10"></textarea>

define the visible dimensions of the textarea

<code>Textarea element
Resize of textarea elements can be disabled using the resize property in
CSS.

textarea {
 resize: none;
}

<code>select list
Create a select list with a select element and some option elements

<select name="country">
 <option value="de">Germany</option>
 <option value="at">Austria</option>
 <option value="fr">France</option>
</select>

Input attributes

● HTML5 defines attributes for inputs that makes form handling

extremely comfortable, commonly used attributes are

○ min and max

○ step

○ minlength and maxlength

○ required

○ placeholder

○ autofocus

<code>min and max attributes
The min and max attributes can set a input range for numbers.

<input type="number" min="0" max="10" step="2" required/>

<code>minlength and maxlength attributes
The minlength and maxlength attributes can limit the number of
characters.

<input type="text" minlength="5" maxlength="20" required/>

<code>placeholder attribute
The placeholder attribute can be used to display a preview text inside a
form control.

<input type="text" placeholder="What’s your name?"/>

Submit and reset

● A submit button is used to send the form

● A reset button is used to reset a form

● Both buttons use the type attribute with either the submit or reset

value

● It is possible to use input or button elements

<code>Submit and reset buttons
The send button will submit a form and the reset button will reset all
values.

<form>
 <input type="text" placeholder="What's your name?">
 <button type="submit">Send</button>
 <button type="reset">Reset</button>
</form>

⚡ These were the most basic and important

things about HTML, there are many more

elements and things to learn.

More interesting elements to look at

● dialog (MDN) for modals and more

● details/summary (MDN) - they can be expanded by click (no js

needed)

● video (MDN)

● table (MDN)

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/summary
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/table

Task
Food Blog Content

CSS

Topics CSS

￫ Short History of CSS

￫ CSS syntax

￫ Add CSS to HTML

￫ CSS Box Model

￫ Typography

￫ Basic Selectors

￫ Advanced Selectors

￫ The Cascade
￫ Inheritance
￫ Reset, Normalize …
￫ BEM
￫ Display Property …
￫ Position
￫ Flexbox
￫ Aligning and centering
￫ Length Units
￫ @-Rules

Topics CSS - 2

￫ Grid

￫ Grid advanced

￫ Transitions

￫ Transform

￫ CSS Animations

￫ CSS Custom Properties

￫ Background

￫ Containing Block
￫ Overflow
￫ CSS Multi-columns
￫ Stacking Context, z-index

While HTML transports information, CSS adds

visual interest and prettiness to a document.

Why / What you’ll learn

● HTML defines structure and content

● Default browser styling is quite pure

● Separation of concerns

○ HTML for content

○ CSS for styling and visuals

Short History of CSS

CSS version history

● December 1996 → CSS Level 1

● May 1998 → CSS Level 2

● June 1998 → First drafts for CSS Level 3 modules

● For a long time it was planned that there would be no more versioning

according to CSS3. In the meantime, versioning is being planned

again and there is talk of CSS4 and CSS5

(https://github.com/CSS-Next/css-next)

https://github.com/CSS-Next/css-next

CSS modules

● CSS is developed and released in

modules

● Examples for CSS modules

○ Visual effects

○ Color + Background

○ Selectors

○ Media Queries

○ Grid Layout

CSS syntax

CSS ruleset

● CSS is defined by rulesets

● Each ruleset consists of a selector and style declarations

● Each style declaration is made of a CSS property and a value

<code>CSS ruleset
Instead of selector, property and value think of who, what and how

/* Super technical */
selector {
 property: value;
}

/* Easy to remember */
who {
 what: how;
}

CSS ruleset

Shorthand properties

● Shorthand properties allow to set values of multiple properties at the

same time

● Can be convenient with one property and risky with another property

<code>Shorthand properties
Shorthand usage for the padding property.

/* Shorthands */
padding: 10px 20px;
/* top, right, bottom, left */
padding: 10px 20px 10px 20px;

/* Non shorthand variant */
padding-top: 10px;
padding-right: 20px;
padding-bottom: 10px;
padding-left: 20px;

💡 The four value padding
shorthand will set padding
values clockwise starting with
padding-top

<code>Comments
Stuff inside /* */ will become a CSS comment.

/* TODO: take over the world */

body {
 background-color: hotpink; /* Gosh I love this color */
}

<code>Comments
Livehacks: Single declarations can be “disabled” with an underscore (or
any prefix that results in an invalid property name).

body {
 // color: red;
 _background-color: hotpink; /* LIFEHACK! 🚀 */
}

There are no single line comments in
CSS 😨

Add CSS to HTML

Add CSS to your HTML

● CSS can be added to HTML in various ways

○ Using the <link> element specifying an external file

○ Directly inside a <style> element inside the <head> element

○ With a style attribute on an element

○ With @import in a stylesheet (not recommended)

<code>Add CSS to your HTML
Three different ways to add CSS to HTML.

<head>
 <link rel="stylesheet" href="style.css">

 <style>
 body { background-color: hotpink; }
 </style>

</head>
<body style="background-color: khaki;">
</body>

CSS as external resource

CSS inside style element

CSS inside style attribute

CSS Box Model and box-sizing

The box model is the blueprint of layout on the web.

● Every element is made out of the box’s

○ Content

○ Padding (defined by the padding property)

○ Border (defined by the border property)

○ Margin (defined by the margin property)

● Box Model on MDN

CSS Box Model

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model

CSS Box Model

Box Model in DevTools

<code>Quiz time
What is the width of the div?

/* This is the whole style sheet */

div {
 padding: 10px;
 border: 10px solid blue;
 margin: 10px;
 width: 100px;
}

Quiz time
What is the width of the div?

The box-sizing property defines how the total

width and height of an element is calculated.

● The box-sizing property defines how the size of elements is calculated

● Can be defined per element, but should be done globally

box-sizing

● Two different options

○ box-sizing: content-box

○ box-sizing: border-box

box-sizing

box-sizing: content-box

● width and height properties only set the size of the elements

content box

● The padding and border values are added to the total dimensions

● This is the browsers default behavior 😳

box-sizing: border-box

● width and height properties define the dimensions of the element

including padding and border values

box-sizing

<code>Global box-sizing
Projects usually have a global box-sizing like this.

*, *::before, *::after {
 box-sizing: border-box;
}

<code>Global box-sizing
Can you guess the advantage or disadvantage of both variants?

html {
 box-sizing: border-box;
}

*, *::before, *::after {
 box-sizing: inherit;
}

*, *::before, *::after {
 box-sizing: border-box;
}

��

<code>Global box-sizing
Can you guess the advantage or disadvantage of both variants?

html {
 box-sizing: border-box;
}

*, *::before, *::after {
 box-sizing: inherit;
}

Smooth integration of components and
plugins that have a different box-sizing
than the rest of the website

See Article on css-tricks

https://css-tricks.com/inheriting-box-sizing-probably-slightly-better-best-practice/

<code>max-width and min-width
You can set a minimal width or a maximal width. There is max-height and
min-height, too.

div {
 width: 90%;
 max-width: 900px;
 min-width: 500px;
}

img {
 max-width: 100%;
 height: auto;
}

max-width often used for images

Typography

With CSS you can

● Choose the font family & the font size

● Define italic or bold text

● Use cute text-shadows

● Define the line-height

● Increase or decrease the space between letters and words

● And much more

<code>font-family
Use lists of fonts. The browser will use the first which is installed on the
machine

font-family: Verdana, Geneva, Tahoma, sans-serif;

/* often a good idea: use system fonts */

font-family:-apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto,

Oxygen, Ubuntu, Cantarell, 'Open Sans', 'Helvetica Neue', sans-serif;

<code>font-family
Put a generic font-family at the end

font-family: Verdana, Geneva, Tahoma, sans-serif;

<code>font-family
Put a generic font-family at the end

font-family: Verdana, Geneva, Tahoma, sans-serif;

Web fonts

● https://fonts.google.com

● Better use the fonts on your own server (DSGVO!):

https://gwfh.mranftl.com/fonts

https://fonts.google.com
https://gwfh.mranftl.com/fonts

<code>font-size
Defines the size of the font

font-size: smaller;

font-size: 16px;

More typographic options

● font-weight: bold | normal

● font-style: italic | normal

● font-variant: small-caps | normal

line-height

● line-height: 0.9;

● line-height: normal;

● line-height: 1.5;

letter-spacing and word-spacing

●

Typography – try it out in Firefox

<code>font shortcut

/* at least font-size and font-family */

font: 16px sans-serif;

/* wrong! */

font: sans-serif;

/* wrong! */

font: 16px;

/* font-size/line-height and font-family */

font: 16px/2 sans-serif;

/* italic, font-size/line-height and font-family */

font: italic 16px/2 sans-serif;

h1 {

 font: 16px sans-serif;

}

Quiz time – what will it look like?

h1 {

 font: 16px sans-serif;

}

/* not bold anymore -

not specified properties

are set to normal */

Quiz time – what will it look like?

<code>text-shadow

/* offset-x | offset-y | blur-radius | color */

text-shadow: 1px 1px 2px black;
 /*multiple text shadows */

text-shadow: 1px 0px 1px #CCCCCC,

0px 1px 1px #EEEEEE, 2px 1px 1px #CCCCCC,

1px 2px 1px #EEEEEE, 3px 2px 1px #CCCCCC,

2px 3px 1px #EEEEEE, 4px 3px 1px #CCCCCC,

3px 4px 1px #EEEEEE, 5px 4px 1px #CCCCCC,

4px 5px 1px #EEEEEE, 6px 5px 1px #CCCCCC,

5px 6px 1px #EEEEEE, 7px 6px 1px #CCCCCC;

https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow

<code>text-align
for aligning texts (p, h1, etc.)

text-align: left | right | start | end | center | justify

<code>text-align - logical values
With writing mode: Instead of left and right better use start and end

<code>text-decoration

text-decoration-color
text-decoration-line: none | underline | overline | line-through |
underline overline
text-decoration-style: solid | double | dotted | dashed | wavy
text-decoration-thickness

<code>text-decoration
Often used to remove the underline from links or to put it back on hover

a { text-decoration: none; }

a:hover { text-decoration: underline; }

<code>list-style-type
useful for lists (ul/ol/li-items)

/* Some examples */

list-style-type: none;

list-style-type: disc;

list-style-type: circle;

list-style-type: "\1F44D"; /* thumbs up sign */

Basic Selectors

<code>Type selector
The type selector styles all elements with a specific element name.

p { color: hotpink; }

<body>
 <header>...</header>
 <h1>...</h1>
 <p>...</p>
 <div>
 <p>...</p>
 </div>
 <p>...</p>
</body>

<code>Class selector
The class selector styles all elements that have a specific class. An
element can have several classes

.pink { color: hotpink; }
<header class="pink"></header>
<p class="example"></p>
<div class="pink cats"></div>

<code>Class selector
You can use colons in your class names, but you have to escape them in
your CSS

.foo\:bar { color: hotpink; }
<header class="foo:bar">...
</header>

<code>ID selector
The ID selector styles the element with a specific id, while id should be
unique.

#foo { color: hotpink; }

<body>
 <header>...</header>
 <h1>...</h1>
 <p>...</p>
 <div>
 <p id="foo">...</p>
 </div>
 <p>...</p>
</body>

<code>Attribute selector
An example that styles all elements with the title attribute.

[title] { color: hotpink; }

<p>...</p>
<p title="Cats">...</p>
<div title="Catz">...</div>
<p id="Cats">...</p>

<code>Attribute selector
An example that styles all elements with the title attribute and a specific
value. The matching is case-sensitive.

[title="Cats"] { ... }
<p title="cats">...</p>
<p title="Cats">...</p>
<div title="Catz">...</div>

<code>Attribute selector
Add the i flag to the selector to match strings case-insensitive

[title="cats" i] { ... }
<p title="cats">...</p>
<p title="Cats">...</p>
<div title="Catz">...</div>

<code>Attribute selector
The attribute selector can also be used with the value patterns starts with,
contains and ends with.

/* Starts with */
[href^="mailto"] { ... }

/* Contains */
[title*="foo"] { ... }

/* Ends with */
[href$=".pdf"] { ... }

<code>Universal selector
The universal selector styles all elements in a document.

* { color: hotpink; }

<body>
 <header>...</header>
 <h1>...</h1>
 <p>...</p>
 <div>
 <p>...</p>
 </div>
</body>

Universal selector *

● The universal selector should be used very rarely

○ Useful for global box sizing

● Does not match the pseudo-elements ::before and ::after

<code>Selector Lists
One ruleset can have multiple comma-separated selectors.

header, .cat, [title] {
 background-color: hotpink;
}

Task
Basic Selectors

Advanced Selectors
Combinators, pseudo classes & elements

Why / What you’ll learn

● Basic selectors are a good starting point but are not sufficient for

real-world applications

● With the help of advanced selectors common problems can be solved

mostly in CSS

Selector combinators allow you to utilize

multiple basic selectors to a more powerful

selector.

Descendant Combinator

● Syntax: selector1 selector2

● Matches all elements for selector2 that are descendants (child,

grandchild, etc.) of selector1

<code>Descendant Combinator
Matches all descendant elements (children, grandchildren, etc.) of selector
1.

main div {
 color: hotpink;
}

<main>
 <article>
 <div></div>
 </article>
 <div></div>
</main>
<div></div>

Child Combinator

● Syntax: selector1 > selector2

● Matches all elements for selector2 that are children of selector1

○ Only children, no grandchildren and so on

<code>Child Combinator
Matches all elements for selector 2 that are children of selector 1.

main > div {
 color: hotpink;
}

<main>
 <article>
 <div></div>
 </article>
 <div></div>
</main>
<div></div>

Adjacent Sibling Combinator

● Syntax: selector1 + selector2

● Matches all elements for selector2 that is the next sibling of selector1

<code>Adjacent Sibling Combinator
Matches only the first sibling element of selector 1.

main + div {
 color: hotpink;
}

<main>
 <article>
 <div></div>
 </article>
</main>
<div></div>
<div></div>

General Sibling Combinator

● Syntax: selector1 ~ selector2

● Matches all elements for selector2 that are following siblings of

selector1

<code>General Sibling Combinator
Matches all following sibling elements of selector 1.

article ~ div {
 color: hotpink;
}

<article>
 <div></div>
</article>
<div></div>
<section>
 <div></div>
</section>
<div></div>

<code>Quiz Time
How can you add a margin only between the list items?

 Uno
 Dos
 Tres
 Quattro

<code>Quiz Time
Like this? 🧐

li {
 margin-top: 1rem;
}

li:first-child {
 margin-top: 0;
}

 Uno
 Dos
 Tres
 Quattro

Lobotomized owl selector

● The lobotomized owl selector follows the pattern * + *

● It is used to style successive elements with of same selector

● Article on A list apart

https://alistapart.com/article/axiomatic-css-and-lobotomized-owls/

<code>Lobotomized Owl selector
Oh yeah 🎉

li + li {
 margin-top: 1rem;
}

 Uno
 Dos
 Tres
 Quattro

Pseudo-classes or -elements are keywords

which can be added to a selector.

<code>

Pseudo-classes use a single colon, pseudo-elements a double colon.

Pseudo-class and -element

selector:pseudo-class { }

selector::pseudo-element { }

<code>
The pseudo-class or -element is added immediately to another selector -
no space ⚠ (or this will be a descendant selector)

Pseudo-class and -element

selector:pseudo-class { }

selector::pseudo-element { }

Pseudo-classes describe a special state of an

element, i.e. if it’s currently focussed.

● :link → for hyperlinks a user didn’t visit yet

● :visited → for hyperlinks a user already visited

● :hover → a pointing device is moved over an element

● :active → for elements currently activated by the user

● :focus → user clicks or taps on element/selects it with the Tab key.

● :focus-visible → user selects element with the Tab key.

Pseudo-classes

<code>Pseudo-classes
Example for pseudo-classes with anchor elements.

a:link { background-color: gold; }

a:visited { background-color: lightblue; }

a:hover { background-color: hotpink; }

a:active { background-color: dodgerblue; }

a:focus { background-color: blue; }

The order of the selectors
matters - but why?

<code>Pseudo-class :not()
not() represents elements that do not match a list of selectors

/* Elements that are not p elements */
:not(p) { background-color: gold; }

/* Elements that are not div and not span elements */
:not(div):not(span) { background-color: lightblue; }

/* you can use a list of selectors instead */
:not(div, span) { background-color: lightblue; }
/* https://developer.mozilla.org/en-US/docs/Web/CSS/:not */

https://developer.mozilla.org/en-US/docs/Web/CSS/:not

<code>Pseudo-class where() and is()
Select any element that can be selected by one of the selectors

:where(header, footer) p:hover { background-color: gold; }

:is(header, footer) p:hover { background-color: gold; }

/* is the same as */
header p:hover, footer p:hover { background-color: gold; }

/*The selectors inside is() count towards the specifity, the selectors
inside :where() have specifity 0 */

● :valid → for forms and inputs that validated successfully

● :invalid → for forms and inputs that are invalid

● :user-invalid → for forms and inputs that are invalid and the user

has interacted with

● :checked → for inputs (radio, checkbox) and option elements that

are checked or selected

● :required → for form elements with a required attribute

Pseudo-classes for form validation

● :out-of-range → for inputs whose current value exceeds the min

or max attributes

● :in-range → for inputs whose current value is within the min or max

attributes

● :placeholder-shown → for inputs whose placeholder is visible

Pseudo-classes for form validation

<code>Pseudo classes for form validation
Minimal form validation example with pseudo-classes,

input:valid {
 border: 1px solid green;
}

form:invalid button {
 opacity: .5;
}

https://codepen.io/FlorenceM/pen/RwLBYNL

● :first-child → is the first element among its siblings

● :last-child → is the last element among its siblings

● :only-child → is the only element of its parent

Pseudo-classes (*-child)

Einzelkind-Selektor

● :first-of-type → is the first type of element among its siblings

● :last-of-type → is the last of type of element among its siblings

● :only-of-type → is the only type of element among its siblings

Pseudo-classes (*-of-type)

● :nth-child() → matches elements based on their position among

its siblings

● :nth-of-type() → matches elements based on their type and

position among its siblings

Pseudo-classes (nth-*)

How :nth-* works

● :nth-* selectors accepts

○ keyword values (odd and even)

○ position numbers (1,2,3,...)

○ functional notation

<code>:nth-* with position value
The position of an element can be passed.

li:nth-child(1) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-* with keyword value
The odd keyword will create a fancy 🦓 look.

li:nth-child(odd) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

:nth-* functional notation

● Syntax: <An+B>

○ :nth-child(n)

○ :nth-child(2n+3)

○ :nth-child(-3n+4)

:nth-* functional notation

● With the functional syntax n will be 0, 1, 2, 3, 4, 5, …

● n can be multiplied

● Numbers can be added to n

<code>:nth-* functional notation
Let’s try this

div:nth-child(n) { }

/*
n

0 = nth-child(0)
1 = nth-child(1)
2 = nth-child(2)
3 = nth-child(3)
4 = nth-child(4)
*/

<code>:nth-* functional notation
Let’s do some math 🎓

div:nth-child(2n) { }

/*
2 x n = 2n

2 x 0 = 0 = nth-child(0)
2 x 1 = 2 = nth-child(2)
2 x 2 = 4 = nth-child(4)
2 x 3 = 6 = nth-child(6)
2 x 4 = 8 = nth-child(8)
*/

<code>:nth-* functional notation
Let’s do some more math 🧮

div:nth-child(3n+2) { }

/*
3 x n + 2 = 3n+2

3 x 0 + 2 = nth-child(2)
3 x 1 + 2 = nth-child(5)
3 x 2 + 2 = nth-child(8)
3 x 3 + 2 = nth-child(11)
3 x 4 + 2 = nth-child(14)
*/

<code>:nth-child(n)
When n is passed, all elements will be styled.

li:nth-child(n) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-child(n+3)
When n+3 is passed, all elements starting from the 3rd will be styled.

li:nth-child(n+3) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-child(2n)
2n is the same as the even keyword.

li:nth-child(2n) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-child(2n+1)
2n+1 is the same as the odd keyword.

li:nth-child(2n+1) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-child(3n+1)
3n+1 will style every third element starting from the first element.

li:nth-child(3n+1) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

<code>:nth-child(-n+3)
-n+3 will only style the first three elements.

li:nth-child(-n+3) {
 background-color: gold;
}

 Item 1
 Item 2
 Item 3
 Item 4
 Item 5
 Item 6
 Item 7
 Item 8

Pseudo-class :has()

● a:has(img) → a element with an img inside

● h1:has(+ p) → h1 which is followed by a p

○ See browser support on caniuse

https://caniuse.com/css-has

Pseudo-classes

● :focus → for elements that are currently focussed

● :focus-within → for elements where a descendant element is

currently focussed

● :focus-visible → for elements that are currently focussed and the

User Agent determines that the focus should be visible

Pseudo-classes

There are more pseudo classes, find the complete list on MDN.

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes

Task
Combinators and Pseudo-classes

Pseudo-elements describe a special part of

an element, i.e. the first letter within a paragraph.

● Pseudo-elements start with a double colon

● In many code examples the single colon syntax is used for historical

reasons

Pseudo-elements syntax

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements#Syntax
https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements#Syntax

● With the pseudo-elements ::before and ::after you can place

some content after the content of an element

● Used to decorate, prefix or suffix an element

● Use cases of ::before or ::after :
https://css-tricks.com/7-practical-uses-for-the-before-and-after-pseudo-elements-in-css/

::before and ::after

https://css-tricks.com/7-practical-uses-for-the-before-and-after-pseudo-elements-in-css/

::before and ::after

● ::before and ::after are activated with the content property

● Without content property they are not visible

● ::before and ::after are only part of the render tree

○ No dedicated event handlers can be attached

<code>::before and ::after
Before and after can be used like this, see example.

.cat::before {
 content: '😻';
}

.cat::after {
 content: '😸';
}

I

like

 cats

https://codepen.io/nicokoenig/pen/VwYoYaX

<code>::first-letter
Can be used to style the first letter, i.e. of a paragraph
Only a subset of CSS properties are allowed.

p::first-letter {
 font-size: 300%;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/::first-letter

<code>::first-line
Can be used to style the first line (not the sentence) of an element. Only
a subset of CSS properties are allowed.

p::first-line {
 font-size: 150%;
 font-weight: 700;
}

https://developer.mozilla.org/en-US/docs/Web/CSS/::first-line

<code>::selection
Can be used to style the current selection. Only a subset of CSS
properties are allowed.

p::selection {
 background-color: black;
 color: white;
 font-size: 200%;
}

⚠ The font-size property will be ignored.

https://developer.mozilla.org/en-US/docs/Web/CSS/::selection

More pseudo-elements

● More pseudo-elements

○ ::placeholder

○ ::marker

○ ::file-selector-button

● See pseudo-elements on MDN

https://developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-elements

Task
Pseudo-Elements

Task
CSS Shopping

The Cascade

The cascade (illustration)

The cascade

On a simplified level the cascade defines which styles should be applied

to an element in the following order:

1. Origin of CSS declarations

2. Importance

3. Specificity

4. Source order

Importance

● The !important keyword overwrites existing style declarations

● Avoid !important with the following exceptions

○ For user style sheets

○ Integration of 3rd party libraries

Importance

● The only way to overwrite an important declaration is to overwrite it

again with another important declaration

○ Only works with the same specificity

<code>Importance
The !important flag will overrule all style declarations.

p {
 color: red !important;
}

/* 1000 lines of css */

.fancy-p {
 color: black;
}

<p class="fancy-p">
 Look at the color of my text
</p>

<code>Importance
Example for multiple !important declarations.

p {
 color: black !important;
}

.fancy-p {
 color: red !important;
}

<p class="fancy-p">
 Look at the color of my text
</p>

<code>Importance
Multiple !important declarations with the same specificity are evaluated
by declaration order (Attention: It is the class selector .p here and not p)

.fancy-p {
 color: red !important;
}

.p {
 color: black !important;
}

<p class="p fancy-p">
 Look at the color of my text
</p>

Specificity

Specificity

● Specificity measures how specific a selector is

● More specific selectors overrule generic selectors

● If two selectors have the same specificity, the last defined style

declaration is used (a.k.a. order in source code)

Specificity order

● Selector specificity in ascending order

○ Universal selector

○ Type selector, pseudo-elements

○ Class selector, attribute selector, pseudo-classes

○ ID selector

○ Inline styles

Specificity score

● Each selector has a specificity score

○ Type selector and pseudo elements → 1

○ Class, pseudo-class, attribute → 10

○ ID → 100

● Specificity calculator

https://polypane.app/css-specificity-calculator/

<code>Specificity
What is the specificity for each ruleset?

#main section.my-section p {
 color: cyan;
}

body div:first-of-type p {
 color: maroon;
}

○ Type selector and pseudo-elements
→ 1

○ Class,
pseudo-class and
attribute
→ 10

○ ID → 100

<code>Specificity
What is the specificity for each ruleset?

#main section.my-section p {
 color: cyan;
}

body div:first-of-type p {
 color: maroon;
}

100 #main
..1 section
.10 .my-section
..1 p

112

..1 body

..1 div

.10 :first-of-type

..1 p

013

Specificity best practices

➔ Use type selectors only for resets / normalize

➔ Use class selectors for application styling

➔ Try to avoid selector combinators and selector nesting

◆ Use code linter (sass-lint, style-lint)

➔ Scope your styles (i.e. shadow dom) or/and use a methodology

(BEM, SMACSS, OOCSS)

Order of CSS rulesets

● If a selector is defined multiple times, the last specified selector will

take priority

● Common issue in projects with large CSS codebase 😭

<code>Order of CSS rulesets
CSS rulesets with the same selector overwrite previous defined
declarations.

.box {
 background-color: fuchsia;
}

/* 1000 lines of crap css */

.box {
 background-color: mediumseagreen;
}

Guess we will have a nice
mediumseagreen background

<code>Dev Tools are your best friend
They’ll tell you when a rule is not applied.

Origin of CSS declarations

CSS declarations can have different origins and will be applied in

descending order:

1. User-agent stylesheets → Styles provided by the browser

2. Author stylesheets → Styles provided by website itself

3. User stylesheets → Styles provided by the user

Origin of CSS declarations

https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade#cascading_order

<code>@layer
New possibility to deal with cascade

@layer components, utilities;

@layer utilities { }

@layer components {}

https://codepen.io/FlorenceM/pen/BaPOapg

This order
matters

No matter how specific the rules in
components are, the rules in utilities are
applied

https://codepen.io/FlorenceM/pen/BaPOapg

Inheritance

In CSS, inheritance controls what happens when no

value is specified for a property on an element.

- Mozilla Developer Network

Inheritance

● Elements can inherit specific property values from parent elements

● Inherited properties are mostly text related (i.e. font, color, direction)

● Layout related properties are not inherited (i.e. width, height, padding)

<code>Inheritance
Certain properties are inherited for the paragraph.

body {
 font-size: 12px;
 color: dodgerblue;
 height: 500px;
}

<body>
 <p>
 I’m dodgerblue and 12px big
 </p>
</body>

Height property is not inherited.

Inheritance
Check if a property is inherited on devdocs.io

https://devdocs.io/

Inheritance
Check if a property is inherited inside the DevTools

Inheritance keywords

● The inheritance of a property can be controlled with these keywords

○ inherit

○ initial

○ unset

<code>inherit keyword
The property value is inherited from the parent element.

article {
 color: dodgerblue;
}

a {
 color: inherit;
}

<article>
 dodgerblue
</article>

<code>initial keyword
With initial the element will use the initial (or default) property value.

article {
 color: dodgerblue;
}

a {
 color: initial;
}

<article>
 black</p>
</article>

unset keyword

● The unset keyword behaves differently depending if the property is a

inherited property

○ Property is inherited → uses the inherited value

○ Property is not inherited → uses the default value

<code>unset keyword
If the property is inherited it will use the ancestors value.

article {
 color: dodgerblue;
}

a {
 color: unset;
 outline: unset;
}

<article>
 <a>I will be dodgerblue
</article>

color is inherited

outline will be the default outline

<code>unset keyword
Reset all properties of an element. This can be useful for custom
components.

.custom-checkbox {
 --custom-checkbox-size: 10vmin;
 all: unset;
 position: relative;
 width: calc(2 * var(--custom-checkbox-size));
 height: var(--custom-checkbox-size);
 border: 2px solid black;
 border-radius: 8px;
 overflow: hidden;
}

Task
What will it look like? 🧐

<code>What will it look like? #1
What is the color of the text?

* {
 color: black;
}

body {
 color: red;
}

<body>
 <p>Foo!</p>
</body>

<code>How will it look like? #2
What is the color of the text?

p {
 color: red !important;
}

* {
 color: black !important;
}

<body>
 <p>Foo!</p>
</body>

<code>How will it look like? #3
What is the color of the text?

body main p {
 color: red;
}

.p {
 color: black;
}

<body>
 <main>
 <p class="p">Foo!</p>
 </main>
</body>

<code>How will it look like? #4
What is the color of the text?

.p { color: red; }

.p.p { color: black; }
<p class="p">Foo!</p>

<code>How will it look like? #5
What is the color of the text?

p {
 color: red !important;
}

<body>
 <p style="color: black;">Foo!</p>
</body>

Reset, Normalize and Fallbacks

Default style sheets

Browsers have different default style sheets

→ Websites without author styles sheets will look (minimal) different

Reset and Normalize

Two different ways to handle this

● Reset

● Normalize

● Compare: https://codepen.io/chriscoyier/pen/JpLzjd?editors=1100

https://codepen.io/chriscoyier/pen/JpLzjd?editors=1100

reset.css

● Most properties will be set to 0 or a reasonable default value

○ Margins and paddings are set to 0

○ Quotes signs are removed for q and blockquote

○ List styles are removed for ul and ol

reset.css

● Reset.css source code on GitHub

● Article by Eric A. Meyer

https://github.com/shannonmoeller/reset-css/blob/master/reset.css
https://meyerweb.com/eric/tools/css/reset/

normalize.css

● preserve useful browser defaults and normalize inconsistencies

between different browsers

● Normalize.css package

● Normalize.css source code on GitHub

● Newer: https://github.com/sindresorhus/modern-normalize

https://necolas.github.io/normalize.css/
https://github.com/necolas/normalize.css/blob/master/normalize.css
https://github.com/sindresorhus/modern-normalize

Fallbacks

● Fallbacks can be used for

○ unsupported features in old browsers

○ slow network conditions 🚂
○ unavailable resources

Fallbacks

● Browsers will ignore style declarations they don’t know

● A fallback usually includes multiple style declarations and overrides

<code>CSS fallback
Fallback for rgba() function.

p {
 /* fallback */
 color: rgba(255,0,0,0.5);

 /* will be used in modern browsers */
 color: hwb(0 0% 0% / 0.5);
}

<code>CSS fallback slow network
What’s the worst case here?

body {
 background-color: white;
}

header {
 background-image: url(header.jpg);
 color: white;
}

<code>CSS fallback slow network
Problem solved ✅

body {
 background-color: white;
}

header {
 background-color: black;
 background-image: url(header.jpg);
 color: white;
}

Task
Cascade, Inheritance & Normalize

BEM

Why / What you’ll learn

● CSS specificity can be a pain in large projects without style scoping

(hey, why is this button green?)

● BEM provides an easy to remember methodology without complicated

rules which will make your CSS life easier

BEM is a highly useful, powerful, and simple naming

convention that makes your front-end code easier to read

and understand, easier to work with, easier to scale, more

robust and explicit, and a lot more strict.

- GetBEM.com

BEM is all about avoiding any specificity issues and having

one way of naming things.

● There are different versions or approaches of BEM

● The slides are bases on getbem.com (with small adjustments)

● It’s ok to make adjustments because a methodology has to work for

you and your team 👫

BEM is not BEM

http://getbem.com/

● During development the CSS is usually structured into smaller chunks

○ Manageable scope of CSS

○ Duplicate selectors or specificity issues are not visible

● In the browser → one big pile of CSS

The problem

Real life CSS

● Declarations with the same selector overwrite each other

● Different specificities will overwrite styles

● !important is sometimes the easiest way to fix things

● New CSS gets added to the end of a large file

○ is suitable for the current developer 🙃
○ might break things for someone else 🤬

Real life CSS

● The color depends on

○ parent elements

○ Classes on parent elements

○ Classes on the p element

● Developers → 🤯

p { color: black; }

/* 100 lines of other stuff */

.important-paragraph { color: #333; }

/* 200 lines of crap */

.news p { color: #222; }

/* 50 lines of something else */

#content .news p { color: #111; }

/* 200 lines more crap */

.text { color: #000 !important; }

BEM

● BEM stands for Block Element Modifier

BEM block

● A block is a standalone entity

● A block is meaningful on its own

● Can be everything

○ blog post

○ site footer

○ button

BEM element

● An element is a part of a block

● An element is semantically tied to its block

● Elements have no standalone meaning

BEM element

● BEM elements can be

○ Inputs of a form

○ Buttons of a button panel

○ Link within a menu

BEM modifier

● A modifier defines a special state or behavior

● Can be applied to any BEM block or element

● A modifier can be

○ The disabled state of a button

○ A different size for a picture

BEM rules

● BEM only uses classes to style elements

○ All selectors have the same specificity ❤
● Avoid combinators, because the specificity changes

○ No rule without exception 🙃

BEM rules

● Class names use dash casing

○ a.k.a. kebab-case
.sub-menu { ... }

.section-header { ... }

.personen-vereinzelungs-anlage { ... }

.button { ... }

BEM naming

● The block is a regular class name

○ i.e. .header or .button

● Block and Element are separated with double underscore

○ i.e. .header__title or .button__icon

● Modifiers are prefixed with a double dash

○ i.e. .header__title--highlighted or .button--warning

<code>BEM naming
BEM naming example for button and its modifiers.

.button {
 color: #000;
}

.button--warning {
 background-color: red;
}

.button--success {
 background-color: green;
}

<code>BEM naming
Button example with BEM.

<button class="button">Normal button</button>

<button class="button button--warning">Please don't</button>

<button class="button button--success">You did it</button>

<code>BEM naming
BEM will not save you from mistakes.

<button class="button button--success button--warning">Ooops!</button>

Order of BEM rulesets

● Block rulesets

● Block Modifier rulesets

● Block Element rulesets

● Block Element Modifier rulesets

<code>Order of BEM rulesets
Always keep the order of rulesets like this to avoid any surprises 🎁

.block {}

.block--modifiers {}

.block__elements {}

.block__element--modifiers {}

But why?

Modifiers can safely overwrite declarations of blocks or elements for a

special use case → calculated risk

Contextual Formatting

● BEM blocks should not set any contextual formattings

○ i.e. margin or position + offsets

● Blocks should be formatted and arranged by it’s usage context

<code>Contextual Formatting
A BEM block should not contain any contextual formatting like in this
example.

/* ⚠ Wrong */
.button + .button {
 margin-left: 1rem;
}

/* ✅ Right */
.button-panel > .button + .button {
 margin-left: 1rem;
}

<div class="button-panel">
 <button class="button">...</button>
 <button class="button">...</button>
</div>

<code>BEM mistakes
BEM should not reflect the HTML structure.

<section class="card">
 <header class="card__header">
 <h2 class="card__header__title"></h2>
 </header>
</section>

Nope ⛔

<code>BEM mistakes
BEM should not reflect the HTML structure.

<section class="card">
 <header class="card__header">
 <h2 class="card__title"></h2>
 </header>
</section>

Solved ✅

Downsides of BEM

● Markup can contain a lot of class names

● Repetitive naming

● Ugly class names

Task
BEM

Display Property and Flow Layout

The display property defines how an element

participates in the layout process.

Why / What you’ll learn

● Knowing the different display types is the first step of understanding the

browsers layout process

● Stop guessing what's going to happen when you save your CSS

Display

● The display property defines the display type of an element

● Most used display types

○ block

○ inline

○ inline-block

○ flex

○ grid

○ table

○ none

https://developer.mozilla.org/en-US/docs/Web/CSS/display

● The display property defines two things

● Outer display type

○ How does the element participate in the flow layout?

● Inner display type

○ How will children of the element laid out?

Display

https://developer.mozilla.org/en-US/docs/Web/CSS/display-outside
https://developer.mozilla.org/en-US/docs/Web/CSS/display-inside

<code>Quiz time
What are the widths of the elements?

div {
 width: 200px;
}

button {
 width: 200px;
}

span {
 width: 200px;
}

<code>Quiz time
What are the widths of the elements?

div {
 width: 200px; ✅
}

button {
 width: 200px; ✅
}

span {
 width: 200px; ❌
}

<code>Quiz time
What are the widths of the elements?

div {
 width: 200px; ✅
}

button {
 width: 200px; ✅
}

span {
 display: block;
 width: 200px; ✅
}

Display: block

● Elements with display: block are called block elements

● Creates a new line before and after itself

● Takes up full width of the parent element by default

Display: block

● Adjusts to content height by default

● width and height properties can be set

● Can contain any* elements

Display: block

● 100% width of parent element

● Adjusts to content height

● New lines before and after

● Width and height can be set

<code>Block-level elements
Example of some block-level elements. Complete list can be found here.

<header></header>
<main></main>
<footer></footer>
<div></div>

<p></p>
Paragraph tags are block-level elements,
but only specific elements are allowed as
content.

https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements
https://devdocs.io/html/element/p

Display: inline

● Elements with display: inline are called inline elements

● width and height properties are ignored

● As big as the elements content

Display: inline

● Overflows to new line if there is not enough space

● Creates no new lines

● Can only contain other inline elements or data

● Vertical margin is ignored and vertical padding behaves odd

○ See inline formatting context

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flow_Layout/Intro_to_formatting_contexts

Display: inline

● No new lines

● Overflows to new line

● width and height are ignored

○ As big as content

What about display: inline-block?

Display: inline-block

● Behaves like display: inline but also accepts width and height

properties

Display: inline-block

● No new lines

● flows to new line

● width and height can be set

Display types
Visual reminder for block-level, inline and inline-block elements.

Display: none

● If an element has display: none it will not be rendered and no

space will be reserved

Visibility: hidden

● When using visibility: hidden the element is indeed hidden

● But it still takes up space in the normal document flow

Position

The position property allows taking elements

out of the normal document flow to create

complex components.

Why / What you’ll learn

● You will learn

○ the difference between non-positioned and positioned elements

○ how positioning can affect the normal document flow

● Position is still important today, but in some situations you can use grid

instead or even anchor positioning (developer.chrome.com)

https://developer.chrome.com/blog/anchor-positioning-api

Position

● The position property defines how an element is positioned

● The top, bottom, left and right properties define the final

location of positioned elements

Position: static

● position: static the the default position of all elements

● Offset properties (top, right, bottom, left) are ignored

● The element is not positioned

Position: static

Position: relative

● The element still takes up the original space in the normal document

flow

● top or bottom set vertical offset

● left or right set the horizontal offset

● The element is positioned

Position: relative

position: absolute can be slightly tricky

because it depends on the containing block

and if offset properties (top, bottom, left, right)

are set.

Containing block

● The containing block for absolute positioned elements is the nearest

positioned parent element

Position: absolute

● Element is removed from the normal document flow

● Block-level elements shrink to its content size if no width or height

property is set

● The element is positioned

Position: absolute

● If no offset properties are given, the element stays in its normal

document flow position

● If offset properties are given, it’s positioned according to the offsets

within the padding box of the containing block

Position: absolute
Absolute positioned element without any given offset properties.

Position: absolute
Given offsets are top: 0px and left: 0px

Containing block

Position: absolute
Given offsets are top: 0px, bottom: 0px, left: 0px and right: 0px (or you
can use inset:0px instead)

Containing block

Position: fixed

● Behaves like position: absolute

● Only difference: the containing block is the viewport

○ Viewport = visible portion of the document in the browser window

● PS: the element is positioned

Position: sticky

● Native sticky headers (elements that stops scrolling at a certain

position)

● Is positioned to the elements nearest scrolling ancestor

● Behaves like normal flow content until the defined offsets (usually top

property) are reached

● After the defined offsets are reached, behaves like fixed positioned

● Example: https://codepen.io/FlorenceM/pen/RwQKwwy

https://codepen.io/FlorenceM/pen/RwQKwwy

Position

Position Positioned? Positioned to?

static No -

relative Yes Normal flow + offsets

absolute Yes Containing block + offsets

fixed Yes Viewport + offsets

sticky Yes Scrolling ancestor + offsets

Task
Position

Flexbox

Flexbox is a efficient and modern way of

layouting

Why / What you’ll learn

● Flexbox allows creating layouts (for components) with ease

● Flexbox allows you to distribute items among available space

● Primarily designed for one-dimensional layouts

● Powerful alignment capabilities

Flexbox

Flex container and flex items

● An element with display:flex becomes the flex container

● The children of the flex container are called flex items

Flex container and flex items

flex and inline-flex

● There are two different flexboxes available

○ display: flex will create a block-level flexbox

○ display: inline-flex will create an inline-level flexbox

<code>flex and inline-flex
Respecting the initial display type with flex and inline-flex.

.header {
 display: flex;
}

.span {
 display: inline-flex;
}

<header class="header"></header>

flex-direction

● A flexbox has a main- and cross-axis

● The direction of the main-axis is defined with the flex-direction

property

● Flex items are laid out according the flex-direction

flex-direction

● The different values for flex-direction are

○ row (default value) → items are placed from left to right

○ row-reverse → items are placed from right to left

○ column → items are stacked from top to bottom

○ column-reverse → items are stacked from bottom to top

⚠ Assuming a left to right writing mode

Flex-direction and writing mode

● The flex-direction variants row and row-reverse are always

based on the writing mode

● Altering the writing mode will also reverse the display order of the

flexbox when using row or row-reverse

flex-direction: row and row-reverse

flex-direction: column and column-reverse

justify-content (for flex containers)

● The justify-content property defines the distribution of space and

flex items across the main-axis

justify-content (for flex containers)
● Values for justify-content are

○ normal (default)

○ flex-start

○ start

○ flex-end

○ end

○ center

○ space-between

○ space-around

○ space-evenly

justify-content for a flexbox with flex-direction: row

align-items (for flex containers)

● The align-items property defines the distribution of space and flex

items on the cross-axis

align-items (for flex containers)

● Values for align-items are

○ flex-start

○ start

○ flex-end

○ end

○ center

○ baseline

○ stretch (default)

align-items for a flexbox with flex-direction: row

<code>gap (for flex containers)
Use the gap property for gaps

.flexcontainer {
 display: flex;
 gap: 10px;
}

https://caniuse.com/flexbox-gap

https://caniuse.com/flexbox-gap

order (for flex items)

● The order property is used to order flex items other than the source

order

● Flex items will be ordered in ascending order (from negative to

positive)

● The default value of order is 0

<code>order
Use the order property to change the displayed order of flex items.

.item-1 {
 order: 1;
}

.item-2 {
 /* default */
 order: 0;
}

.item-3 {
 order: -10;
}

<div class="item-1"></div>
<div class="item-2"></div>
<div class="item-3"></div>

<!--
<div class="item-3"></div>
<div class="item-2"></div>
<div class="item-1"></div>
-->

order for a flexbox with flex-direction: row

flex-grow (for flex items)

● The flex-grow property defines how the remaining space is

distributed among the flex items

● The flex-grow property takes a grow factor as number value

flex-grow (for flex items)

● Remaining space of the flexbox is divided by the total number of

flex-grow values

● If all flex items have the same flex-grow value, the remaining space

is shared equally

<code>flex-grow
Flex-grow controls the distribution of remaining space.

.flex-item-1 {
 flex-grow: 1; /* 1/3 of remaining space */
}

.flex-item-2 {
 flex-grow: 2; /* 2/3 of remaining space */
}

.flex-item-3 {
 flex-grow: 0; /* No remaining space will be distributed 😢 */
}

flex-grow

flex-shrink (for flex items)

● The flex-shrink property defines a shrink factor for each flex item

● Flex items will only shrink if there is not enough space available

● Default flex-shrink value is 1 → all items shrink equally

<code>flex-shrink (for flex items)
Flex items will shrink by their flex-shrink value.

.flex-item-1 {
 flex-shrink: 0; /* Will not shrink */
}

.flex-item-2 {
 flex-shrink: 2; /* Shrinks by factor 2 */
}

.flex-item-3 {
 flex-shrink: 1; /* Shrinks by factor 1 */
}

flex-shrink

flex-basis (for flex items)

● The flex-basis property sets the initial main size of a flex item

● The main size related to the current flex-direction

○ Horizontal main axis → width property (in ltr writing mode)

○ Vertical main axis → height property (in ltr writing mode)

flex-basis (for flex items)

● The default value for flex-basis is auto → will look for elements

width or height

● A given length value for flex-basis will overwrite either the elements

width or height property

<code>flex-basis (for flex items)
In this example the width property is used, because flex-basis is set
to auto

.flexbox {
 display: flex;
}

.flex-child {
 width: 500px;
 height: 500px;
 flex-basis: auto;
}

<code>flex-basis (for flex items)
In this example the flex-basis property takes precedence over width.

.flexbox {
 display: flex;
}

.flex-child {
 width: 500px;
 height: 500px;
 flex-basis: 100px;
}

flex shorthand (for flex items)

● The flex property shorthand allows to set flex-grow,

flex-shrink and flex-basis depending on the given value(s)

<code>flex shorthand (for flex items)
Depending on the given value(s), the flex shorthand behaves differently.

flex: 5;
/* flex-grow: 5; flex-shrink: 1; flex-basis: 0%; */

flex: 100px;
/* flex-grow: 1; flex-shrink: 1; flex-basis: 100px; */

flex: 2 0;
/* flex-grow: 2; flex-shrink: 0; flex-basis: 0%; */

flex: 5 100px;
/* flex-grow: 5; flex-shrink: 1; flex-basis: 100px; */

align-self (for flex items)

● The align-self property allows flex items to be positioned

individually on the cross-axis

<code>align-self
Individual alignment of flex items can be done with align-self.

.flexbox {
 display: flex;
 align-items: flex-end;
}

.flex-child {
 align-self: flex-start;
}

YOLO 😅

margin (for flex items)

● You can use margin: auto to position flex items on the main-axis to

the start or end

<code>margin (for flex items)
Alignment of flex items can be done with margin: auto.

.flexbox {
 display: flex;
}

.flex-child {
 margin-left: auto;
}

margin-left: auto;

flex-wrap (for flex containers)

● The items of the flexbox will always stay on one line

● If the flexbox contains more items than it can fit, it will overflow on the

same line

● flex-wrap allows to wrap these items on multiple lines

○ Possible values: no-wrap, wrap, wrap-reverse

<code>flex-wrap (for flex containers)
The flex-wrap property allows to wrap items on multiple lines.

.flexbox {
 display: flex;
 flex-wrap: wrap;
}

align-content (for flex containers)

● It is used to align flex items on the cross axis.

● It has only an effect when flex-wrap: wrap is applied.

● Possible values: flex-start, flex-end, center, space-between,

space-around, stretch (default)

align-content (for flex containers)

align-content: start align-content: end align-content: center

Additional resources

● Guide on flexbox on css-tricks

● Flexbox froggy

● Flexbox playground and editor

● Live flexbox tester

● Flexbox patterns

https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://flexboxfroggy.com/#de
http://the-echoplex.net/flexyboxes/
https://flexbox.help/
https://www.flexboxpatterns.com/

Task
Flexbox

Aligning and centering
Center everything

Why / What you’ll learn

● You often want to align/center an element

● You will learn the different techniques and when to use them

<code>

When you want to align a text, for example the text of a paragraph

text-align

p.center {

 text-align: center;

}

p.right {

 text-align: right;

}

<code>

Centering block elements horizontally

margin: auto

p {

 width: 80%;

}

p.centered {

 margin-left: auto;

 margin-right: auto;

}

<code>vertical-align
Only for images or table cells

https://developer.mozilla.org/en-US/docs/Web/CSS/vertical-align

Vertical centering

● To center one line of text you can try:

○ the same value for line-height and height

○ the same value for padding-top/padding-bottom

● Everything else: use flexbox or grid

<code>Aligning with Flexbox 1
align-items: stretch | flex-start |center | flex-end | baseline

.flexbox {

 display: flex;

 align-items: …
}

<code>Aligning with Flexbox 2
align-self: auto | stretch | flex-start | center | flex-end | baseline

.flexbox {

 display: flex;

}

.flex-item {

 align-self: …;

}

<code>Aligning with Flexbox 3
justify-content: flex-start | flex-end | space-between | space-around
| space-evenly | center

.flexbox {

 display: flex;

 justify-content: ..;

}

Task
Centering/aligning with flexbox

<code>Centering with Flexbox - 1
Use margins for the flex item

.flexbox {

 display: flex;

}

.flex-item {

 margin: auto;

}

<code>Centering with Flexbox - 2
Use align-items/justify-content for the flex container

.flexbox {

 display: flex;

 align-items: center;

 justify-content: center;

}

Useful links for centering and aligning

● https://css-tricks.com/tips-aligning-icons-text/

● https://css-tricks.com/centering-css-complete-guide/

● https://web.dev/centering-in-css/

https://css-tricks.com/tips-aligning-icons-text/
https://css-tricks.com/centering-css-complete-guide/
https://web.dev/centering-in-css/

Length Units

Why / What you’ll learn

● Length units in CSS can be confusing - or can you quickly explain the

difference between em and rem? 😅
● You will learn the difference between absolute and relative units

● The CSS length data type represents a distance value (i.e. width or

height of an element)

● Length values consist of a number and a unit

Length units

Font-relative lengths

● Are used to define the size of text or elements

● The actual size depends on the element itself or a parent element

● Most used font-relative lengths are em and rem

em

● em stands for equal m

● Depends on the font size of the parent element / same element

<code>em
In this case, em relates to the font-size of a parent element.

.parent {
 font-size: 16px;
}

.child {
 width: 1em; /* = 16px */
}

<code>em
In this case, both parent and the element define a font-size.

.parent {
 font-size: 20px;
}

.child {
 font-size: 10px;
 width: 2em; /* 20px = 2 * 10px */
}

rem

● rem stands for root equal m

● Represents the font-size of the root element

● Is often used in the context of responsive web design

<code>rem
rem always relates to the globally defined font-size.

.child {
 width: 1rem; /* = 16px */
}

.another-child {
 font-size: 100px;
 width: 2rem; /* = 32px */
}

The default font-size of the
browser is 16px

<code>rem
rem always relates to the globally defined font-size.

html {
 font-size: 32px;
}

.child {
 width: 1rem; /* = 32px */
}

.another-child {
 font-size: 100px;
 width: 2rem; /* = 64px */
}

rem/em

Em: Problems with nested elements, e.g. lists

Rem: No problems with nested elements/lists

https://codepen.io/FlorenceM/pen/eYRaoMV

https://codepen.io/FlorenceM/pen/eYRaoMV

Other font-relative lengths

● ch = represents the width of the glyph “0” of the current element

● ex = represents the height of the letter “x” of the current element

<code>Usage of ch unit
Since ch represents the approximate width of one character, it can be
used to limit the maximum line length.

p {
 max-width: 50ch;
}

The ideal line length is between 45
and 75 characters.

See article on smashing magazine.

https://www.smashingmagazine.com/2014/09/balancing-line-length-font-size-responsive-web-design/

Viewport units

● Viewport units are relative to the current viewport

● Viewport is the visible portion of the browser

Viewport units

CSS defines the following viewport units

● vw = viewport width

● vh = viewport height

● vmin = smaller axis of the viewport

● vmax = larger axis of the viewport

<code>Viewport units
Some examples of viewport units.

/* Full width of the viewport */
width: 100vw;

/* Half width of the viewport */
width: 50vw;

/* 80% of the smaller side of the viewport */
width: 80vmin;

👍 I always use a vmin values
for small demos that are
displayed in the middle of the
browser.

Viewport units horizontal viewports

Viewport units vertical viewport

Better Viewport Units

● Large Viewport Units (lvw, lvh etc.): represent largest possible

viewport

● Small Viewport Unis (svw, svh etc.): represent the smallest viewport

● Dynamic Viewport Units (dvw, dvh): takes the actual viewport in

account (with/without keyboard etc.)

Absolute units

● Absolute units represent physical measurements of a device (screen,

printer)

● Examples for absolute units are px, cm, mm

px

● In the old days 1px represented an actual device pixel.

● For high resolution displays px became a logical unit (one CSS pixel

does not necessarily correspond to one physical device pixel)

● Browsers scale the pixel to maintain legibility, ensuring consistency

across various devices.

Absolute units

● cm → 1 cm = 96px/2.54

● mm → 1 mm = 1/10th of 1 cm

● in = inch → 1 inch = 96px

Relative vs. absolute units

● Absolute units can cause accessibility issues because they don’t

scale when the user agents font-size changes

● Prefer relative units over absolute units when possible

Task
Length Units

@-Rules
Media queries and friends

@-rules tell CSS how to behave.

Why / What you’ll learn

● A modern website will be used from a wide variety of devices, and this is

where @-rules and media queries come into play

● Learn how to adapt your CSS to the needs of your user

● @media → queries for a specific device criteria

● @supports → queries for specific CSS feature

● @keyframes → defines a keyframe animation

● @font-face → defines an external font (to be downloaded)

Most important @-rules

Media queries

● @media rules are commonly known as media queries

● Media queries can query a specific feature of the user agent, device

or environment

● Media queries are used for responsive web design

https://alistapart.com/article/responsive-web-design/

Media queries

● Examples for specific features are

○ Width and height of the viewport

○ Resolution

○ Orientation

○ User preferences

○ Input mechanism

Media types

● Media types are used to target a specific media

● Possible media types are

○ all

○ screen

○ print

○ speech

<code>Media types
Print Stylesheet

.theme {
 background-color: black;
 color: white;
}

@media print {
 .theme {
 background-color: white;
 color: black;
 }
}

<code>Logical operators
Logical operators help to create specific media queries.

/* Combine media feature expressions */
@media screen
and (max-width: 1000px)
and (orientation: landscape) { }

/* comma as logical or */
@media print, screen { }

/* Every media type but screens */
@media not screen {}

Width

● Is used to query the current width of the rendering surface

● Should be used with a media type

● Can be prefixed with min or max

○ min-width: 100px is equal to width >= 100px

○ max-width: 100px is equal to width <= 100px

<code>Width
Media queries for width are commonly used for RWD.

html {
 font-size: 100%;
}

/* equals width >= 600px */
@media screen and (min-width: 600px) {
 html {
 font-size: 110%;
 }
}

<code>Viewport meta
Don’t forget to use the meta-element to set the viewport, otherwise it
won’t work as intended.

<meta name="viewport" content="width=device-width, initial-scale=1.0">

Screen orientation

● The orientation media feature can be used to query for the current

screen orientation

● Supported values are landscape and portrait

● Orientation asks for the current aspect ratio of the viewport, NOT the

device orientation

<code>Screen orientation
Orientation asks for aspect ratio, not device orientation.

@media (orientation: landscape) {
 /* viewport width > viewport height */
}

@media (orientation: portrait) {
 /* viewport height > viewport width */
}

Mobile first vs. desktop first

● When using media queries for responsive web design, there are two

possible approaches

○ Mobile first

○ Desktop first

Mobile first

● With mobile first the default expected device is a mobile

● When the viewport gets larger additional rules are applied

<code>Mobile first
Example for a mobile first approach.

/* default 1 column layout */
.content {
 display: block;
}

/* 3 column layout for larger screens */
@media screen and (min-width: 60em) {
 .content {
 display: grid;
 grid-template-columns: 20% 60% 20%;
 }
}

Desktop first

● With desktop first the default expected device is desktop computer

● When the viewport gets smaller additional rules are applied

<code>Desktop first
Example for a desktop first approach.

/* default 3 column layout */
.content {
 display: grid;
 grid-template-columns: 20% 60% 20%;
}

/* 1 column layout for small screens */
@media screen and (max-width: 30em) {
 .content {
 display: block;
 }
}

Responsive, adaptive - WHAT?

● What is responsive design?

● And what is adaptive design?

● And what about liquid or static?

● Article from kulturbanause

● Example adaptive: https://www1.wdr.de/

● Example responsive: https://www.tagesschau.de/

https://blog.kulturbanause.de/2012/10/die-layout-typen-einer-website-fixed-fluid-elastic/
https://www1.wdr.de/
https://www.tagesschau.de/

Task
Media Queries

<code>User preferences - dark or light mode?

body {
 background-color: #fff;
 color: #000;
}

@media (prefers-color-scheme: dark) {
 body {
 background-color: #000;
 color: #fff;
 }
}

<code>Input type: hover or not?
Show .additional on hover - if hover is possible, otherwise show it directly

.additional {
 opacity: 1;
}
@media (hover:hover) {
 .button + .additional{
 opacity: 0;
 }
 .button:hover + .additional{
 opacity: 1;
 }
}
 https://codepen.io/FlorenceM/full/zYLXxwG

https://codepen.io/FlorenceM/full/zYLXxwG

Media Queries vs Container Queries

● Media queries can “only” handle the whole screen width or height

● Sometimes you need media queries for single elements. These are

called container queries

○ See article from css tricks

○ Caniuse container queries

https://css-tricks.com/say-hello-to-css-container-queries/
https://caniuse.com/css-container-queries

Container Queries

.container {

 container-type: inline-size;

 }

 @container (max-width: 30em) {

 .card {

 /* special formatting if the container is less than 30em wide */

 }

 }

https://codepen.io/FlorenceM/pen/gOjdOJO

https://codepen.io/FlorenceM/pen/gOjdOJO

Grid
Basics

CSS Grid is the efficient and modern way of

building complex layouts.

Why / What you’ll learn

● Complex layouts usually required tons markup and CSS

● You will learn how to use CSS Grid to build layouts with minimal code

used

● CSS Grid suits best for two dimensional layouts

● To define a CSS Grid, set the display property of an element to

grid or inline-grid

CSS Grid

CSS Grid vs CSS Flexbox

https://www.w3.org/TR/css-grid-1/

https://www.w3.org/TR/css-grid-1/

CSS Grid

● The CSS Grid is defined through columns and rows

● Child elements of the grid container a placed automatically row-wise

by default

● But items items can also be placed individually

grid terminology

grid-template-columns

● The grid-template-columns property defines the columns of the

grid

● It takes a list of values defining the width of columns

grid-template-columns

● Possible values for defining the width of grid columns are

○ Length values → i.e. px or rem

○ Percentage values → 30% of the grid container

○ Fractional values → the fr unit represents a fraction of the available space

grid-template-columns

grid-template-columns

min-content and max-content

● It is possible to use the min-content and max-content keywords to

define the column width

● min-content → the column has the smallest possible width to fit the

content

● max-content → the column is wide enough to fit its content

min-content and max-content

minmax() function

● The minmax(min,max) function can be used to define a minimal and

maximal size (of a column or row)

● Accepts the following values

○ Length values → i.e. px, fr or percentages

○ max-content or min-content keywords

grid-template-rows

● The grid-template-rows property defines the rows of the grid

● It accepts a list of values defining the row widths (like

grid-template-columns)

grid-template-rows

<code>repeat function
The repeat(n, size) function is used to define repetitive columns or
rows.

.grid {
 display: grid;
 grid-template-columns: repeat(4, 100px);
 /* grid-template-columns: 100px 100px 100px 100px; */
}

grid-template

● The grid-template property is a shorthand for

grid-template-columns and grid-template-rows

● The values for grid-template-columns and grid-template-rows

are separated with a slash

<code>grid-template
Example usage of the grid-template property shorthand.

.grid {
 display: grid;
 /*
 grid-template-columns: 100px 200px;
 grid-template-rows: 1fr 400px;
 */
 grid-template: 100px 200px / 1fr 400px;
}

Convenient for small grids and
maybe a bit messy for larger
grids.

grid-template

Gap

● Grid columns and rows can have a gap (aka. gutter)

● A gutter can be defined with the grid-column-gap/column-gap or

grid-row-gap/row-gap properties

● The grid-gap/gap shorthand can set both gap values

<code>Gap
Brief example of the gap properties.

.grid {
 display: grid;

 grid-column-gap: 10px;
 grid-row-gap: 20px;

 /* grid-gap shorthand */
 grid-gap: 10px 20px;
}

grid-gap

grid-auto-flow

● The grid-auto-flow property defines how auto-placement for grid

items is done

● Possible values are

○ row → grid items are auto placed on grid rows (default)

○ column → grid items are auto placed on grid columns

grid-auto-flow

grid-auto-flow

● Its possible to add the dense keyword to the row and column

keywords

● dense tries to fill any holes in the grid

● dense will eventually mix up the original order of grid items

grid-auto-flow with dense keyword

Grid lines

● Grid items can be placed according to grid lines

● Grid lines are placed

○ before the first column / row

○ between columns and rows

○ after the last column / row

Grid lines

grid-column-start / grid-column-end

● The properties grid-column-start and grid-column-end are

used to place grid items within grid lines

● The grid-column property shorthand will set both values

grid-column-start / grid-column-end

● grid-column-start: 1 will set the start position on the first grid line

● grid-column-end: 4 will set the end position on the forth grid line

● Negative numbers will count in reverse from the last grid line

<code>grid-column-start / grid-column-end
Example for grid item placement using the grid lines.

.grid {
 display: grid;
 grid-template-columns: 100px 100px 100px;
}

/* the grid item will span across all columns */
.item {
 grid-column-start: 1;
 grid-column-end: 4;
}

Grid lines

Grid lines

span keyword

● grid-column-start and grid-column-end can be combined with

the span keyword

● The span keyword is followed by a number, which indicates the

number of columns or rows to be consumed by the grid item

span keyword

● grid-column-start: span 2 will span the item from it’s

(automatic) start position across 2 grid lines

● grid-column-end: span 3 will span the item from it’s (automatic)

end position across 3 grid lines to the start

span keyword

grid-row-start / grid-row-end

● The properties grid-row-start and grid-row-end work like the

properties for columns, but instead for rows

● The grid-row shorthand will set both properties

Task
Place items in a grid

grid-template-areas

● The grid-template-areas property can define named areas within

a grid

● Named grid areas are defined per grid row as a string

● Column names are separated with a space

● Undefined areas can be marked with a dot

<code>grid-template-areas
Example for the usage of grid-template-areas.

.grid {
 display: grid;
 grid-template: repeat(4, 100px) / repeat(3, 100px);

 grid-template-areas:
 "header header header header"
 ". main main ."
 "footer footer footer footer"
}

.header { grid-area: header; }

.main { grid-area: main; }

.footer { grid-area: footer; }

Task
Responsive Grid

Grid advanced
more possibilities

Aligning items with grid

● align-content: alignment of the grid as a whole, vertically
● justify-content: Alignment of the grid as a whole, horizontally
● align-items: alignment of the grid items, vertically
● justify-items: alignment of the grid items, horizontally

Aligning items with grid

justify-content and align-content

● The justify-content and align-content properties come into

play when the grid items don’t take up the available space of the grid

● The properties are used to place the grid items horizontally and

vertically

justify-content and align-content

● justify-content is used for horizontal placement of grid items

● align-content is used for vertical placement

● Possible values are

○ start, end, center, stretch, space-around, space-between, space-evenly

place-content

● The place-content property shorthand is used to both values for

align-content and justify-content

justify-content

justify-items and align-items

● If a grid item does not fill a grid cell, the justify-items and align-items

properties can be used to align the item horizontally and vertically

● Possible values are

○ start, end, center, stretch (default)

place-items

● The place-items property shorthand is used to set both values for

justify-items and align-items

justify-self and align-self

● The properties justify-self and align-self can be used to

place a grid item individually in a grid cell

completely flexible grid

● You can create a grid, which adapts to every viewport.
● The ingredients:

○ repeat() with autofit
○ minmax()

● https://codepen.io/FlorenceM/full/powmVLr

https://codepen.io/FlorenceM/full/powmVLr

<code>completely flexible grid

.grid {

 display: grid;

 grid-template-columns: repeat(auto-fit, minmax(120px, 1fr));

 grid-auto-rows: minmax(120px, auto);

 grid-auto-flow: dense;

 grid-auto-columns: minmax(120px, auto);

 }

<code>repeat function with autofit
The browser decides how many columns fit.

.grid {
 display: grid;
 grid-template-columns: repeat(autofit, 100px);
 }

minmax() function

● The minmax(min,max) function can be used to define a minimal and

maximal size (of a column or row)

● Accepts the following values

○ Length values → i.e. px, fr or percentage

○ max-content or min-content keywords

Additional resources

● Grid Garden

● Article on CSS Grid by Kulturbanause

● Complete Guide Grid on css-tricks

● Online Grid Editor griddy.io

● Grid by example

https://cssgridgarden.com/
https://blog.kulturbanause.de/2013/12/css-grid-layout-module/
https://css-tricks.com/snippets/css/complete-guide-grid/
https://griddy.io/
https://gridbyexample.com/examples/

Transitions

Websites with the right amount of animations

and transitions are a joy to use.

Why / What you’ll learn

● Modern UX uses animations and transitions to direct the users attention

● Transitions are fun 🥳

Transitions

● A transition defines an animated change from one state to another

state

○ Element → hovered element

○ Notification invisible → Notification visible

● A transition can be either triggered by JavaScript or user interaction

Transitions

● The transition property is a shorthand for

○ transition-property

○ transition-duration

○ transition-timing-function

○ transition-delay

<code>Transitions
This transition will animated from a transparent background color to
salmon.

.background-color {
 transition: background-color .5s;
}

.background-color:hover {
 background-color: salmon;
}

transition-property

● The transition-property property defines what properties should

be animated during the transition

● Can be multiple properties

<code>transition-property
Multiple values for transition-property are separated with comma.

.transition {

 /* One property */
 transition-property: opacity;

 /* Multiple properties */
 transition-property: opacity, transform;
}

transition-property

Nearly all properties are animatable, but only a

few should be animated.

● Properties that change the layout (width, height, padding, etc.) should

not be animated → bad performance

● Properties that only change the appearance (color) can be animated

→ good performance

● Opacity and transform have the best performance → handled by the

GPU

Transitions and render performance

transition-duration

● The transition-duration property defines the duration of the transition

● The default duration is 0s

● Can be defined in

○ Seconds → i.e. 1s or .5s

○ Milliseconds → 500ms

Recommended transition duration

● There is no golden rule for the best transition duration

● Material Design defines recommended durations by the size of the

animated element

○ Small (i.e. checkbox) → 100ms

○ Medium (i.e. bottom sheet) → 200ms to 250ms

○ Large (i.e. card) → 250ms to 300ms

transition-timing-function

● The transition-timing-function defines how intermediate

values are calculated

● Can be defined with

○ keyword values

○ steps(n) function

○ cubic-bezier() function

transition-timing-function

● The predefined keywords are

○ ease → slow start, then fast, slow end

○ linear → same speed from start to end

○ ease-in → slow start

○ ease-out → slow end

○ ease-in-out → slow start and end

● See https://codepen.io/FlorenceM/full/ExXzRrj

https://codepen.io/FlorenceM/full/ExXzRrj

Multiple transitions

● Multiple transitions can be defined per element

● When using the transition shorthand each transition definition is

separated with comma

● When using the single properties the values are separated with

comma

<code>Multiple transitions
Transitions can animate multiple properties at the same time.

transition: opacity .2s, transform .4s;

/* These two transitions do the same thing */

transition-property: opacity, transform;
transition-duration: .2s, .4s;

<code>Transition and hover
Will the transition work in both directions? See example.

div {
 background-color: lightblue;
}

div:hover {
 background-color: salmon;
 transition: background-color 1s;
}

https://codepen.io/FlorenceM/pen/rNgKqwO

Transitions and hover

● If the transition is defined in the :hover selector, the transition will

only work in one direction

CSS games using transitions and animations

● CSS only platform game

● CSS only hogs shooter

https://codepen.io/nathantaylor/full/KaLvXw
https://codepen.io/cassie-codes/full/38482f73213cab313c38a9b0c4076e8c

More resources on rendering

● csstriggers: List of animatable properties and performance impact

● Anatomy of a frame

● Pixel Pipeline

● Martin Splitt: Life of a pixel

https://csstriggers.com/
https://aerotwist.com/blog/the-anatomy-of-a-frame/
https://developers.google.com/web/fundamentals/performance/rendering
https://www.youtube.com/watch?reload=9&v=WSo2r7LBFLA

Transform

Transform is the main ingredient of beautiful and

performant web animations.

Why / What you’ll learn

● Modern UX uses animations to guide users

● Performant animations can’t be done without the transform property

● Transform allows us to visually manipulate an element in 2D or 3D space

without disrupting the normal document flow

● The transform property modifies the coordinate space of elements

● transform provides several transform functions

○ i.e. translate, scale, rotate, skew

● Transform functions can be concatenated

Transform

Translate

● The translate(tx, ty) function repositions an element on the

horizontal and/or vertical axis

● Takes two length values

https://developer.mozilla.org/en-US/docs/Web/CSS/length

Translate

● Dedicated transform functions for single axis use cases

○ translateX(tx)

○ translateY(ty)

Translate with absolute values

● When translate is called with absolute values (i.e. px, rem or viewport

units), the element is repositioned with the passed absolute value

<code>translate(tx, ty)
Usage of the translate function with two absolute values.

transform: translate(100px, 200px);

Will move the element 100px on the
x-axis to the right (ltr direction) and
200px down on the y-axis

<code>translate(tx, ty)
When called with a single parameter, ty will be 0.

/* transform: translate(100px, 0); */
transform: translate(100px);

When only one parameter is given, the
element will not be positioned on the
vertical axis.

Translate with percentage values

● When translate is called with percentage values, the percentage

value always refers to the size of the element

<code>translate(tx, ty)
Percentage values passed to transform always refer to elements size.

.transform {
 width: 100px;
 height: 100px;
 transform: translate(200%, 50%);
}

The element will be moved 200px to the
right (ltr direction) and 50px to the
bottom.

Translate
The translate function repositions an element on the x- and/or y-axis.

Translate
Percentage values always refer to the size of the transformed element.

TranslateZ

● translateZ(d) repositions an element on the z-axis

● d > 0 → element becomes larger

● d < 0 → element becomes smaller

TranslateZ

● translateZ has no effect without a given perspective

● Perspective defines the distance between the screen and the user

● Small perspective values will look more dramatic than high values

TranslateZ

● The perspective can be defined using the

○ perspective(d) function on same element

○ perspective property on any parent element

TranslateZ
translateZ will move an element on the z-axis.

Rotate

● The rotate(a) function will rotate an element around a fixed point

● Fixed point is defined by transform-origin property

● Default transform-origin value is the center of the element

Rotate

● The rotation angle a is specified as an angle value

● Positive angles will rotate clockwise

● Negative angles will rotate counter clockwise

● Use rotateX(a) and rotateY(a) to rotate an element on a single

axis

https://devdocs.io/css/angle

Rotate
Positive angles rotate clockwise and negative ones counter clockwise.

Rotate and transform-origin
The transform-origin defines the fixed point for the rotation.

transform-origin

● The transform-origin property defines an elements origin for

transformations

● transform-origin: x-offset y-offset z-offset

● By default transform-origin is the center of the element

○ transform-origin: 50% 50% 0

transform-origin

● transform-origin property accepts

○ length

○ percentage

○ keyword values

transform-origin

● The keyword values are

○ left = 0%

○ right = 100%

○ center = 50%

○ top = 0%

○ bottom = 100%

<code>transform-origin keywords
The keyword values are quite convenient.

transform-origin: 50% 50%;
transform-origin: center center;

transform-origin: 0% 100%;
transform-origin: left bottom;

The two grouped declarations mean the
same.

Scale

● The scale(s) function is used to scale elements (change their size)

● The scale factor s is specified as number

https://devdocs.io/css/number

Scale

● Scale factor 1 is the default size

○ 0.5 is half the elements size

○ 2 is twice the elements size

○ With a scale factor of 0, the element will be invisible

○ -1 will flip the whole element

Scale

● Use scale(s) to scale the whole element

● Use scale(sx,sy) to scale x and y axis differently

● Use scale(sx,sy,sz) to perform a 3d scale on the x, y and z axis

● Use scaleX(s) or scaleY(s) to perform a scale operation on a

single axis

Scale
Examples for different scale factors.

Task
Transform and Transitions

CSS Animations

Why / What you’ll learn

● How to use animations for stunning effects

● When to prefer animations instead of transitions 🥳

Animations consist of two components

● Keyframes (@keyframes) for the start and end states of the animations

(+ intermediate waypoints)

● The description of the animation with the animation property

Animations

<code>Animations - example
The animation starts immediately

@keyframes fade-in {

 0% {

opacity: 0;

 }

 100% {

opacity: 1;

 }

}

a {

 animation: fade-in 5s ease;

}

name of the animation

<code>Animations - @keyframes
With intermediate waypoints

@keyframes fade-in {

 0% {

opacity: 0;

 }

 50%, 80% {

opacity: .8;

 }

 100% {

opacity: 1;

 }

}

<code>Animations - @keyframes
Instead of 0% and 100% you can use „from“ and „to“

@keyframes slide-in {

 from {

 transform: translateX(0%);

 }

 to {

transform: translateX(100%);

 }

}

<code>Animations - animation property
The animation property defines how the animation will be applied

a {

 animation: fade-in 5s ease;

}

/* or more explicit */

a {

 animation-name: fade-in;

 animation-duration: 5s;

 animation-timing-function: ease;

}

animation-* part 1

● animation-name: specifies the name

● animation-duration: length of time for one cycle

● animation-timing-function: timing of the animation

● animation-delay: delay between the time the element is loaded

and the beginning of the animation sequence

animation-* part 2

● animation-iteration-count: how often?

● animation-direction: should the animation change direction

after each run?

● animation-fill-mode: what values are applied by the animation

before and after it is executing?

● animation-play-state: to pause and resume the animation

sequence

<code>Animations - path animation
offset-path defines a movement path to follow during the animation
@keyframes move {

 0% {

offset-distance: 0;

 }

 100% {

offset-distance: 100%;

 }

}

#motion-demo {

 offset-path: path('M20,20 C20,100 200,0 200,100');

 animation: move 3000ms infinite alternate ease-in-out;

}

<code>Comparison: animation and transition

@keyframes fade-in {

 0% {

opacity: 0;

 }

 100% {

opacity: 1;

 }

}

a {

 animation: fade-in 5s ease;

}

a {

 opacity: 0;

 transition: opacity 5s ease;

}

a:hover {

 opacity: 1;

}

Difference between animation and transition

● transition needs a defined state to change (hover, focus) or a class

● animation can start directly

● animation can repeat as often as you want

● animation: allows for more fine tuning

Quiz time - what to use?

● Loading spinner

● Pulsing button

● Page transition

● Animated hover effect

<code>Useful for animations: box-shadow

/* offset-x | offset-y | blur-radius | spread-radius | color */

box-shadow: 2px 2px 2px 1px rgba(0, 0, 0, 0.2);

Task
Animation

<code>Animate.css - a lot of useful animations

<!-- include it-->

<link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/animate.css/4.1.1/animate.m

in.css">

 <!-- use it -->

 <h1 class="animate__animated animate__bounce">An animated element</h1>

Animation libraries

● https://animate.style/

● https://animejs.com/

● https://greensock.com/gsap/

https://animate.style/
https://animejs.com/
https://greensock.com/gsap/

CSS Custom Properties

Why / What you’ll learn

● Custom properties are the key to customizable components

● Custom properties can be used for real time theming

● Custom properties can be changed during runtime

● They can be used to create customizable web components

Custom Properties

● Custom Properties are defined with the double dash prefix

○ i.e. --brand-color: salmon

● A custom property can then be used with the var() function

○ i.e. background-color: var(--brand-color)

Custom Properties

<code>Custom Properties
Custom properties are defined with the double dash prefix and used with
the var() function.

:root {
 --color: black;
}

p {
 color: var(--color);
}

<code>Custom Properties
Minimal approach for theming using custom properties.

body {
 --color: black;
 --background: white;
 background-color: var(--background);
}

.dark-theme {
 --color: white;
 --background: black;
}

p {
 color: var(--color);
}

<code>Inheritance
Custom properties are inherited.

body {
 --color: blue;
 color: var(--color);
}

main {
 --color: red;
}

p {
 color: var(--color);
}

<body>
 <main>
 <p>Paragraph in main</p>
 </main>
 <p>Paragraph in body</p>
</body>

Fallback value

● What happens if a custom property is undefined?

● The var() function takes a second argument, which represents a

fallback value

● Syntax → var(--property, <fallback-value>)

<code>Fallback value
The var() function takes a second parameter as the fallback value.

/* Oooops! */
/* --color: salmon */

p {
 color: var(--color, black);
}

<code>calc()
The calc() function can be for calculations with custom properties.

:root {
 --base: 16rem;
}

.class {
 /* 80% of the --base variable */
 padding: calc(.8 * var(--base));
}

<code>Custom properties and JavaScript
Custom properties can be accessed with JavaScript with low effort.

const el = document.querySelector(".foo");

// Get custom property from inline style
el.style.getPropertyValue("--color");

// Get custom property from computed styles
getComputedStyle(el).getPropertyValue("--color");

// Update custom property to inline style
el.style.setProperty("--color", "red");

Task
Custom Properties

Background

Why / What you’ll learn

● Multiple backgrounds can create stunnings effects

● Most websites rely on backgrounds

● Gradients are fun 🎨

● An element can have a background color and multiple background

images

● The backgrounds are stacked on top of each other

● Each of them can have different sizes and positions

Element background(s)

<code>Render order of multiple backgrounds
The background-color is rendered first followed by the
background-images.

.background-order {
 background-image:
 url(foo.png), /* Position 1 */
 url(bar.png; /* Position 2 */
 background-color: salmon; /* Position 3 */
}

● The background-color property sets the background color of an

element

● Given value can be

○ Color name → i.e. salmon or papayawhip

○ Hexadecimal value → #RGB, #RRGGBB, #RGBA, #RRGGBBAA

○ RGB value → rgb() or rgba() function

○ HSL value → hsl() or hsla() function

○ currentColor or transparent keyword

background-color

background-clip

● The background-clip property defines which box of the box model

is used to clip the background color and image

● Possible values

○ border-box (default)

○ padding-box

○ content-box

○ text (see caniuse)

https://caniuse.com/?search=background-clip

<code>background-clip: text
Text can be given a fancy background (see example).

main {
 font-size: 5rem;
 font-weight: 800;
 color: transparent;
 background-image: linear-gradient(to right, salmon, black);
 -webkit-background-clip: text;
 background-clip: text;
}

https://codepen.io/FlorenceM/pen/qBGKQRK

background-image

● The background-image property can set one or multiple images on

an element

<code>background-image
Multiple background images are stacked top to bottom, see example.

.example {
 width: 400px;
 height: 400px;
 background-color: salmon;
 background-image:
 linear-gradient(rgba(0,0,0,.1), rgba(0,0,0,1)),
 url(https://picsum.photos/400/400);
}

Gradient is rendered on top
of the image

https://codepen.io/FlorenceM/full/WNgzZWK

background-repeat
● The property background-repeat defines how to repeat a

background(s) (example here)

● Possible values

○ repeat (default)

○ repeat-x (only x-axis)

○ repeat-y (only y-axis)

○ no-repeat

○ space (the background is repeated with spacing, but no clipping)

○ round (the background image will stretch without gaps)

https://codepen.io/FlorenceM/pen/PodadGd

background-size

● The background-size property defines the size of the background

image(s)

● A size can be defined for each dimension (width and height)

background-size

● background-size can be used with these two keywords

○ contain → scale image as large as possible without clipping

○ cover → scale the image to cover the whole element

● Both keyword values will not stretch the image to keep its proportions

● See example

https://codepen.io/FlorenceM/pen/RwYJYoy

background-size

● background-size also takes

○ the auto keyword (default value) → keep the original size

○ percentage values → relative to the background position area

○ length values

● The first given value refers to the width and the second value refers to

the height

<code>background-size
One value and two value syntax for background-size.

/* background width is 100px and background height is auto */
background-size: 100px;

/* background width 100px and background height 200px */
background-size: 100px 200px;

background-position

● background-position is a shorthand property for the

background-position-x and background-position-y properties

● The default values is 0% 0% (top left corner)

background-position

● Possible values are

○ Keyword values → top, bottom, left, right, center

○ Length values → i.e. 10px or 20rem

○ Percentage values → refers to the size of the background area

linear-gradient

● The linear-gradient() function will draw a gradient with for the given

colors

● By the default the gradient is drawn from top to bottom (0deg)

Gradient direction

● The direction of the gradient can be defined with

○ Degrees → i.e. 0deg (top to bottom) or 90deg (left to right)

○ Turns → i.e. .25turn equals 90deg

○ Keywords → i.e. to right, to bottom or to left top

<code>linear-gradient direction
Examples for the direction of the linear-gradient.

/* default direction 0deg - from top to bottom */
background-image: linear-gradient(salmon, hotpink);

/* 180deg = from bottom to top */
background-image: linear-gradient(180deg, salmon, hotpink);

/* to right bottom equals 135deg */
background-image: linear-gradient(to right bottom, salmon, hotpink);

linear-gradient color stops

● Color stops defined where a color inside a gradients starts (or ends)

● Color stops can be defined with

○ Percentage values → refer to the background size

○ Length values → i.e. 10px or 2rem

<code>linear-gradient
When colors are given without color stops they will be distributed equally.

/* Both gradients look the same */

background-image: linear-gradient(salmon, dodgerblue, gold);

background-image: linear-gradient(salmon 0%, dodgerblue 50%, gold 100%);

<code>linear-gradient color stops
Gradient colors can also have no gradient when the color stops use the
same value (example)

.gradient {
 width: 100px;
 height: 100px;
 background-image:
 linear-gradient(45deg, transparent 48%, black 48%, black 52%, transparent 52%),
 linear-gradient(135deg, transparent 48%, black 48%, black 52%, transparent 52%);
}

How will this look like?

https://codepen.io/FlorenceM/pen/BaeOqMP

<code>Combining multiple backgrounds
If only one value for background-size, -repeat or -position is given, the
values apply to all background-images.

div {
 background-image:
 linear-gradient(black, white),
 linear-gradient(lime, dodgerblue);
 background-size: 100px 100px;
 background-repeat: no-repeat;
 background-position: 0px 0px;
}

The values will be applied
to all background images.

More resources

● Of course there is a tool for gradients

● Gallery of gradients by Lea Verou

● And there is also radial-gradient() and conic-gradient()

https://cssgradient.io/
https://leaverou.github.io/css3patterns/
https://developer.mozilla.org/en-US/docs/Web/CSS/gradient/radial-gradient%28%29
https://developer.mozilla.org/en-US/docs/Web/CSS/gradient/conic-gradient

Containing Block

The containing block impacts layout specific properties.

● The width of the containing block is used as reference, when using

the following properties with percentage values

○ width

○ left and right

○ padding

○ margin

Width of the containing block

● The height of the containing block is used as reference, when the

following properties are used with percentage values

○ height

○ top and bottom

Height of the containing block

Identifying the containing block

● The containing block for elements with position static,

relative or sticky is the content box of the nearest block level

ancestor element

Identifying the containing block

● The containing block for absolute positioned elements is the nearest

positioned parent element

● While this is above statement is usually true, here are some

exceptions

https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#Identifying_the_containing_block

Identifying the containing block

● The containing block for elements with position: fixed is the

viewport

<code>height: 100%
Will the child element have the same height as the container?

.container {}

.child {
 height: 100%;
}

<div class="container">
 <p>Foobar</p>
 <div class="child"></div>
</div>

height: 100%

● Percentage values are calculated based on the height of the

containing block

● If the height of the containing block is not defined explicitly and the

element itself is not positioned absolute, the height is set to auto

Overflow

Overflow

● If the content of an element is bigger than the content box of the

element it will overflow

● Content will only overflow, if the element has an explicit width or

height

Overflow

Overflow

● The overflow property is a shorthand for overflow-x and

overflow-y

Overflow

● Possible values are

○ visible (default) → the overflowing content is visible

○ hidden → the overflowing content is hidden

○ scroll → overflowing content can be scrolled, scrollbars are always visible

○ auto → overflowing content can be scrolled, scrollbars are only visible when

content overflows

Overflow

● Overflowing content will not affect the flow of the page and the

following elements

CSS Multi-columns

CSS Multi-columns allows to create

print-inspired layout with minimal markup and

CSS.

● CSS Columns makes it easy to have print-inspired layouts

● It allows to define the width and amount of columns for text content

CSS Column

CSS Columns

● There are three different ways to declare columns

○ column-count → number of columns

○ column-width → width of columns

○ column → property shorthand (which declares both, safest way)

column-count

● The column-count property defines the number of columns

● When a number value is used, it defines the number of columns

● When the auto keyword is used, the number of columns depend on

the column-width property

<code>column-count
Brief example of column-count property.

p {
 column-count: 5;
} ⚠ Paragraphs will always have 5 column,

even when it does not make any sense.

column-width

● The column-width property defines the ideal column width

● When a length value is passed, it defines the ideal width of columns

○ i.e. column-width: 300px

● When the auto keyword is used, the number of columns depend on

the column-count property

ideal column-width

● The browser will always try to fill the width of the container

● The actual column width can differ from the passed value

○ When the container can’t fit all columns, the columns will shrink

○ If there is available space, the columns will grow

<code>column-width
Brief example of column-width.

p {
 column-width: 200px;
}

👉 When column-width is used without
column-count, the browser will always try to
fill the width of the container with unlimited
columns

<code>columns
The columns property shorthand will set both column-width and
column-count.

p {
 columns: 200px 3;

/*
 column-width: 200px;
 column-count: 3;
*/
}

column-gap

● The column-gap property defines the gutter between the columns

● By default a 1em gutter is used

● Can be set to a length or percentage value

column-rule

● The column-rule property is used to add vertical lines between each

column

● column-rule a property shorthand for

○ column-rule-width

○ column-rule-style

○ column-rule-border

column-span

● The column-span property allows to span elements across all

columns

● This is often used for headlines

● Possible values are

○ none → the element does not span multiple columns

○ all → the element will span across all columns

<code>column-span
Minimal example for column-span, see demo here.

article {
 columns: 250px auto;
}

.article-headline {
 column-span: all;
}

https://codepen.io/nicokoenig/pen/qBEWdBa

Stacking Context and z-index

It’s important to understand that the z-index

is not global to the document.

Why / What you’ll learn

● The stacking context and z-index is closely coupled - you won’t

understand one without the other.

● Addings a high z-index to an element will not ensure that it will always

be rendered on top of the document.

By default all elements will be rendered by the

order of their appearance in the HTML.

Stacking order (without z-index)

Elements are stacked (rendered) in the following order

1. Background and borders of (root) element

2. Non-positioned descendent elements in order of appearance

3. Positioned descendent elements in order of appearance

<code>Stacking order (without z-index)

div:nth-child(1) {
 position: relative;
 top: 20px;
 left: 20px;
 background-color: dodgerblue;
}

div:nth-child(2) {
 /* position: relative; */
 background-color: darksalmon;
}

<main>
 <div>First div</div>
 <div>Second div</div>
</main>

What happens if we toggle uncomment this line?

Stacking order and transform

● If an element is transformed (i.e. translated over a sibling element) it

behaves like a positioned element

● The z-index property sets the position of an element along the

z-axis

● Only works on positioned elements (or flex items or grid items)

● Possible values

○ auto keyword → default position on z-axis (0)

○ number → position on the z-axis

z-index

z-index

● Elements with the same z-index will be stacked according to the

source order

z-index

● The z-index of an element is NOT global in the document

● The z-index is scoped within a stacking context

The stacking context is a three-dimensional

conceptualization of HTML elements along imaginary z-axis

relative to the user, who is assumed to be facing the viewport

or the webpage. HTML elements occupy this space in priority

order based on element attributes.

- MDN web docs

A stacking context is an element that acts as a

z-index boundary for its descendant elements.

● A stacking context is formed due to a couple of reasons, i.e.

○ The root element → html

○ Elements with position absolute / relative and a z-index value other than auto

○ Elements with position value fixed / sticky

○ Elements with opacity less than 1

○ Elements that are flex / grid items with a z-index value other than auto

● Complete list of reasons a stacking context is created

Stacking context

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Positioning/Understanding_z_index/The_stacking_context#The_stacking_context

Stacking order with z-index

1. Background and border

2. Negative z-indexes

3. Block-level elements

4. Floated elements

5. Inline elements

6. z-index 0

7. Positive z-indexes

My (golden) Rules
Totally opinionated

My golden rules 🏅

● Global reset or normalize via tag selectors → low specificity

● Application styling only with classes → higher specificity

● Use pseudo classes and elements where it makes sense

● Use lower dash casing for all class names (even if you don’t use BEM)

My golden rules 🏅

● Use BEM wherever it makes sense

● BEM should not reflect the HTML structure

● Modifiers should only add styling but not overwrite (no rule without

exception)

● All rules should be lint-able

We teach.
workshops.de

